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Our point of departure is the paper [7] in which a problem of M. C. Escher is solved us
ing methods of contemporary combinatorics, in particular, Burnside's lemma. Escher 
originally determined (by laboriously examining multitudes of sketches) how many 
different patterns would result by repeatedly translating a 2 x 2 square having its four 
unit squares filled with copies of an asymmetric motif in any of four rotated aspects. 
In this note we simplify the problem from two dimensions to one dimension but at the 
same time we generalize it from the case in which a 2 x 2 block stamps out a repeating 
planar pattern to the case in which a 1 x n block stamps out a repeating strip pattern. 

The 1 x 2 case 
Suppose we are tiling a strip by a single rectangle containing an asymmetric motif, 
say •• a motif taken from South African headwork which is a rectangle divided by a 
diagonal into two triangles, one solid red, and the other yellow with a green stripe. The 
original motif has three additional aspects, namely the motif rotated by 180°, reflected 
in a vertical line and in a horizontal line. We note the motif by b and its other aspects 
as follows: 

q=� 
since the letters p, q and d are the corresponding aspects of the letter b under these 
transformations. This notation was first introduced in [9] to encode the symmetry 
groups of strip patterns. 

Aspects band q are translated and rotated images of the original aspect b; we call 
these direct aspects. Assume that we may select any two direct aspects (with repetition 
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168 MATHEMATICS MAGAZINE 
allowed) to form a signature for a 1 x 2 block of two rectangles containing those 
aspects of the motif. There are four possible signatures: 

bb: � bq: m qb: � qq: M. 
By repeating a 1 x 2 block horizontally and removing the outline of the rectangles, 
each signature determines uniquely a 2-way infinite strip pattern: 

bb*= · ··bbbbbb · · · = l � l 
bq* = . . .  bqbqbq .. . = I 

qq*= ··· qqqqqq
· · ·

= l � l 
The patterns bq* and qb* differ only by translation and so we write bq* = qb*. 

Similarly, the pattern bb* can be turned into qq* by rotating the strip by 180°, so we 
have as well bb* = qq* and thus there are only two different patterns. 

If we repeat the above construction of the patterns, but allow the two-letter signature 
to be any ordered pair of aspects chosen from {b, q, d, p}, the number of possible sig
natures increases to 16. If we do not distinguish between patterns that can be obtained 
from each other by translations and rotations, we will find that there are six patterns. 

bb* = qq* = . . .  bbbbbb . . .  = I�� 

bq* = qb* = . . . bqbqbq . . . = I � 

bd* = pq* = db* = qp* = . . . bdbdbd . . . = FA'� r.il 
bp* = dq* = pb* = qd* = ... bpbpbp ... = 

dd*=pp*=··· dddddd···= �wn 

dp* = pd* = ... dpdpdp ... = 

If, however, we do not distinguish between patterns which are mirror images of one 
another, then the first four complete the list. 

The key observation is that we do not actually have to construct the strip patterns 
and observe them in order to determine how many different ones there are. Since the 
patterns are determined by their signatures, the method is to study what permutations 
of signatures do not change the pattern. The general model can be set up as follows. 

We are given a set of permutations P that generates a group (P) which acts on 
the set of signatures S = { w1• w2, • • •  } , where each permutation in P transforms each 
signature into one that produces the "same" strip pattern, with the choice of group 
determining the definition of sameness. To count how many different strip patterns 
there are, we have to determine the number of orbits under the action of (P) on S. 
The perfect tool for counting the number of orbits is Burnside's lemma: The number 
of orbits equals the average number of points fixed by the permutations in the group. 
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More precisely, Burnside's  lemma says that the number of orbits N of the group 

(P) acting on S is 

1 
N = I(P)I L lfix(p)l 

pE(P) 

where fix(p) is the set of signatures fixed by the permutation p .  
Burnside's  lemma, also called the Cauchy-Frobenius lemma in the literature, has  a 

long history, which can be found in [5, 11 ] ,  but still has its place in advanced texts, 
e .g . ,  see [10] . 

Suppose the group (P) is generated by two elements T and R. Here T interchanges 
the first and second elements of the signature, T(XY) = Y X, and corresponds to a 
1 -unit horizontal translation of the strip pattern. R replaces each aspect with its ro
tated aspect and interchanges their order in the signature : R(XY) = R(Y)R(X), where 
R(b) = q, R(q) = b, R(p) = d and R(d) = p. R corresponds to a 1 80° rotation of 
the strip pattern. 

The group (P) = (T, R I T2 = R2 = (T R)2 = I) is  isomorphic to the Klein four 
group. Its Cayley graph is shown in Table 1 below : the group elements are represented 
as vertices. The horizontal edges correspond to multiplication by T, vertical edges 
to multiplication by R. In Table 1 we also show the action of the group (P) on the 
four signatures bb, bq, qb, qq, and see that there are a total of 8 signatures fixed 
by elements of (P) (boxed) . Since the group (P) has 4 elements, Burnside's  lemma 
confirms the number of distinct patterns for (P) acting on signatures with two aspects 
to be 8/4 = 2. 

TABL E 1: (P) and i ts act ion on fou r  signatu res 

I R T TR 
R TR bb [§_] qq [§_] qq 

bq [§][§] qb qb 

I T qb �� bq bq 

qq � bb � bb 

If we extend Table l to include 1 6 rows of signatures to account for all four aspects, 
we obtain a total of 24 signatures fixed by elements of (P), which are shown boxed 
in the first 4 columns of Table 2, and so the formula in Burnside's  lemma gives the 
number of distinct patterns as 24/4 = 6. 

To regard the strips as identical even after orientation-reversing transformations, 
we extend the group ( P) by adding another generator, the mirror M, where M acts 
on signatures by M(XY) = M(X)M(Y), and on aspects by M(b) = p, M(p) = b, 
M(q) = d and M(d) = q. This corresponds to taking the mirror image of the infinite 
strip in a horizontal axis ,  and, together with the transformations we already have, al
lows us to consider strip patterns as identical if they differ by orientation-preserving 
as well as orientation-reversing transformations. Let P' = {T, R, M}. The extended 
group 

(P') = (T, R, M I T2 = R2 = M2 = (TR)2 = (TM)2 = (RM)2 = I ) 
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has 8 elements and is isomorphic to the direct product o f  three copies o f  the cyclic 
group on 2 elements. Table 2 shows also the Cayley graph of (P'} in which the three 
sets of mutually parallel edges correspond to multiplication by R, T and M, respec
tively. Table 2 shows the action of (P'} on the sixteen signatures; there are 32 signa
tures fixed by elements of (P'} , which are boxed. 

TABLE 2: (P') and its act ion on 16 s ignatures 

R__ll r T J!'RM 

�M I T 

bb 

bq 

qb 

qq 

bp 

bd 

qp 

qd 

pb 

pq 

db 

dq 

pp 

pd 

dp 

dd 

I R T 

[§] qq [§] 
[§][§] qb 

�� bq 

� bb � 
� dq pb 

[§] pq db 

� db pq 

� pb dq 

§] qd bp 

[§] bd qp 

@§] qp bd 

§] bp qd 

� dd � 
�� dp 

�� pd 

� pp � 

TR M RM TM TRM 
qq pp dd pp dd 

qb pd pd dp dp 

bq dp dp pd pd 

bb dd pp dd pp 

qd pb qd � dq 

qp pq [§] qp db 

bd db � bd pq 

bp dq bp � pb 

dq bp dq §] qd 

db bd [§] db qp 

pq qp §] pq bd 

pb qd pb §] bp 

dd bb qq bb qq 

dp bq bq qb qb 

pd qb qb bq bq 

pp qq bb qq bb 

Note: M mirrors the aspects in a horizontal mirror. We could have, alternately, 
used a vertical mirror Mv which mirrors aspects band d, p and q; however the three 
groups generated by {T, R, M}, {T, R, Mv }, and {T, R, M, Mv} are all the same since Mv = RM, and M = RMv. Try to draw the corresponding Cayley graphs !  

From Table 2 and Burnside' s  lemma, we obtain the result of 32/8 = 4 different strip 
patterns with four motif aspects, confirming our earlier observation for the 'headwork' 
pattern. 

In fact, from the first four columns of Table 2, we can determine the previously 
computed number of patterns up to rotation and translation, with either all four aspects, 
all 1 6  rows,  or just the two direct aspects, the first 8 rows .  

The main purpose of  this note is  to  generalize the approach from the 1 x 2 case to 
the general case 1 x n, n � 1 .  The permutation groups become much more compli
cated and the sets of signatures on which they act grow much larger. To understand the 
general case it is  enough to consider two relatively small representatives .  
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The 1 x 1 2 case 
Let's compute the number of patterns arising from a strip of length 12 filled with 
choices from all four aspects, regarding patterns to be the same up to translation, rota
tion and reflection, that is, using the extended group, (P'). 

To study the transformations of the signature, it is convenient to think of the signa
ture as being drawn on the surface of a ring with 12 marked sections, see Figure 1, in 
which the initial point in the signature is marked with a small triangle. 

Fifure 1 The signature w = bbddbbppqqpp on a ring, and T4 M(w), and their pattern. 
T M(w) = w, sow E fix(T6M) 

In fact, this is how you can create the strip patterns in practice; by inking the ring 
and then rolling out the pattern! 

Any symmetry of the ring clearly yields the same pattern. Rotationally, the ring :has 
dihedral symmetry, and the rotation group is generated by two rotations. The first is a 
rotation of 30° about the vertical axis through the center of the ring and corresponds 
to a translation of the strip pattern by one unit. We denote it by T: 

The second is a 180° rotation about the axis passing through the center of the ring and 
passing through the midpoint of the initial boundary of the first motif, and corresponds 
to a 180° rotation of of the strip pattern. We denote it by R and its action on the 
signature is 

See Figure 2. 

Figure 2 Transforming the signature on a 12-ring 
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The elements T and R generate the dihedral group D12 in the usual way: 

(P) = (T, R I R2 = T12 = I , RTR = T-1). 

The orientation-reversing transformations can be added by adding the generator M, 
which is the reflection in the horizontal plane that bisects the ring, 

and corresponds to a reflection of the strip pattern in a horizontal plane; see Figure 2. 
We get the following presentation for (P') , 

(T, R, M I I = M2 = R2 = T12, RTR = T-1• TM = MT, RM = MR). 

Of course, it is convenient to describe groups in terms of generators and relations, 
but that really doesn't help us in using Burnside's lemma, since we have to take the 
mean over all the elements of the group, not just the generators. Fortunately, at least 
for the dihedral group and its extension, we can easily visualize all the transformations. 
See Figure 3. 

a) 
Figure 3 The axes of the rotational symmetries of the ring, and the planes of the mirror 
symmetries 

All 24 transformations in (P) are rotational symmetries of the ring. There are 12 
rotations of 180° around axes in the horizontal plane through the center of the ring, see 
Figure 3a. Of these, 6 have axes passing through the centers of two opposite motifs, 
and so fix no signatures since the motifs are asymmetric. The other six have axes on 
the midpoints of motif boundaries, with the motifs being divided into 6 pairs of orbits. 
So there are 6 · 46 fixed signatures for these transformations. See Figure 4, in which 6 
independent choices (b, d, d, p. b, q) for the first six positions yield the fixed signature 
bddpbqbqdppq. 

Figure 4 Creating a fixed signature for a horizontal axis rotation 

The other 12 transformations in ( P) are rotations about the vertical axis of fz 360° = 
i · 30°, i = 1, ... , 12. If i and 12 have a common divisor k, which means that there 



Figure 5 Orbits of rotations of a 12-gon 

are integers p and q such that i = pk and 12 = qk, then q · (i · 30°) is a multiple of 
360° and so this rotation has motif orbits of size a divisor of q. In fact, it is easy to see 
that the orbits of i · 30° are of size 12/ gcd(i, 12), and there are gcd(i, 12) of them. See 
Figure 5. So, for each divisor k of 12 there are rotations with aspect orbit sizes k. Each 
of these will have 412/k fixed signatures, since we are free to choose any of the four 
aspects for each orbit. See Figure 6 in which four independent choices, (b, d, d, p) 
for the first four positions, and a 3 · ��r rotation, yield the signature bddpbddpbddp. 
Twelve has divisors 12, 6, 4, 3, 2, and 1. For 12 there will be 4 rotations with orbit size 
12, corresponding to i = l, 5, 7, 11, which is the number of positive integers less than 
12 which are coprime to 12, giving 4 

· 
41 

fixed signatures. For 6 there are two rotations 
of orbit size 6, corresponding to i = 2 = 1 · 1j and i = 10 = 5 · 1j. Observe that 1 

and 5 are the integers less than 6 relatively prime to 6; we get 2 · 
42 

fixed signatures. 
For 4 there are two rotations of orbit size 4, i = 3 = 1 · ¥ and i = 9 = 3 · ¥, with 1 

and 3 being the integers less than 4 relatively prime to 4; we get 2 · 
43 

fixed signatures. 
For 3 there are two rotations of orbit size 3, i = 4 = 1 · 1f and i = 8 = 2 · lf, with 1 

and 2 being the integers less that 3 relatively prime to 3; we get 2 · 
44 

fixed signatures. 
For 2 there is one rotation of orbit size 2, i = 6 = 1 · lf, with 1 the only integer less 

than 2 relatively prime to 2; we get 1 · 
46 

fixed signatures. For 1 there is one rotation 
of orbit size 1, i = 12; we get 1 · 

412 
fixed signatures. 

Figure 6 Creating a fixed signature for a vertical axis rotation 
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The reader may recall that for k > 1, the number of positive integers at most k 
which are relatively prime to k is denoted by cp(k) and is called the Euler phi function. 
Note that cp(l) = 1 by definition. So we have for the rotations about the vertical axis 

cp(12). 412/12 + cp(6). 412/6 + cp(4). 412/4 + cp(3). 412/3 + cp(2). 412/2 + cp(l). 412/1 

fixed signatures. 

Figure 7 Creating a fixed signature for a reflection 

For the 24 orientation-reversing symmetries, twelve are reflections in a vertical mir
ror, see Figure 3b, 6 of which pass through the center of a motif, and so have no 
fixed signatures, and 6 of which pass through the boundaries of the aspects, giving 6 
aspect orbits of size 2 each, hence 6 · 46 fixed signatures, See Figure 7, in which 6 
independent choices (b, d, d, p, b, q) for the first six positions yield the fixed signa
ture bddpbqpdqbbd. The other 12 orientation-reversing symmetries are not reflec
tions at all, but the product of one of the twelve rotations about the vertical axis with 
the reflection in the horizontal mirror, and are called rotary reflections. We have al
ready analyzed the aspect orbits under these rotations. The only difference now is that, 
with the horizontal mirror, if the aspect orbit size is odd, specifically for k = 3 and 1, 
(i = 4, 8, 12) there will be no fixed signatures since, following the aspect through its 
orbit, the aspect would return to its original position on the ring as a reflected aspect. 
For example, in Figure Sa we have chosen aspects b, b, and q respectively for the 
first three positions of a rotatory reflection of angle 90°, one for each of the three or
bits, yielding the fixed signature bbqppdbbqppd. Trying the same method, Figure 8b, 
and choosing b, b, q, and b for the first four positions with the rotary reflection of 
120°, with rotational order 3, gives the signature bbqbppdpbbqb which is not a fixed 
signature under the 120° rotary reflection. 

Figure 8 A fixed signature for a rotary reflection 

So, omitting the odd divisors, there are 

cp(12). 412/12 + cp(6). 412/6 + cp(4) . 412/4 + cp(2). 412/2 

fixed signatures of rotary reflections. 
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The 1 x 1 5 case 

Figure 9 Orbits of rotations of a 1 5-gon 

For a ring of size 15, the rotations with vertical axis, and their rotary reflections are 
analyzed just as before; see Figure 9. Thus there are 

({!(15). 415/15 + ({!(5). 415/5 + ({!(3). 415/3 + ({!(1). 415/1 

fixed signatures for the first kind and no signatures fixed by the second kind because 
15 has no even divisors. 

The main difference here is that, since the ring is of odd size, every 180° rotation 
about a horizontal axis has one pole of the axis passing through the midpoint of an 
aspect boundary and the other passing though the center of the ·aspect; see Figure 10. 
None of these will have fixed signatures, since the motif is assumed to be asymmetric. 
Similarly, each vertical mirror passes through an aspect boundary on one side of the 
ring, and passes through the middle of an aspect on the opposite side, so, since the 
motifs are asymmetric, there are no fixed signatures. Thus the total number of fixed 
signatures is 8 · 415115 + 4 . 415/5 + 2 . 415/3 + 1 . 415/1. 

The 1 x n case 
In the general case, the group (T, R, M} has elements: 

Vertical axis rotations 
Horizonal axis rotations 
Vertical reflections 
Rotary reflections 

Ti 
TiR 
TiRM 
TiM. 

Figure 1 0 Axes and mirrors of a 15-ri ng 
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and acts o n  a signature w = X1X2 · · · Xn, X; E {b, q, d, p} via 

Translation: T(X1X2 · · · Xn) = X2X3 · · · XnX J . 
Rotation: R(X1X2 · · · Xn) = R(Xn) · · · R(X2)R(X1). 
Mirror: M(X1X2 · · · Xn) = M(X1)M(X2) · · · M(Xn). 

For the vertical axis rotations the number of fixed signatures if there are only the 
two direct aspects is  

v (n )  = L cp(k)2nfk ' 
kin 

while if there are 4 aspects the number is 

V (n) = L cp(k)4nfk . 
kin 

For horizontal axis rotations the number of fixed signatures if there are only the two 
direct aspects is  { (n/2)2nf2 for n even and h (n )  = 0 for n odd 

while if there are four aspects the number is { (n/2)4nf2 for n even and H(n) = 0 for n odd. 

For the orientation-reversing transformations, we are only considering the case with 
four aspects . For the vertical mirror reflections, there are H(n) fixed signatures and, 
lastly, for the rotary reflections ,  there are 

R(n) = L cp(k)4n/k 
kln,21k 

fixed signatures. 
So, if we consider only the two direct aspects and rotational symmetry we have by 

Burnside 's lemma 

patterns .  

v (n )  + h (n )  
f (n )  = --2::--n--

If we allow four aspects but only consider rotational symmetry we have 

patterns .  

F(n) = 
V (n) + H(n) 

2n 

If we allow four aspects and consider mirror symmetry as well,  there are only 

patterns .  

G (  
V (n) + 2H(n) + R(n) n) = 

____ 4_n ___ _ 

The number of orbits for each of the three cases, where n = 1 ,  . . .  , 30 is given in 
Table 3. The sequence of numbers f(n) appears as sequence with ID number A053656 
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in Sloane's  On-Line Encyclopedia of integer sequences [8] , where it is described as 
arising from the number of necklaces with n blue or red beads such that the beads 
switch color when the necklace is turned over, which is clearly equivalent to our sit
uation. Our interpretation of f (n) via the number of strip patterns is  more naturally 
motivated than color-switching beads. 

TABL E 3 :  N u mbers of str ip  patterns u nder d i fferent notions  of 'sameness' . 

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
1 1  
1 2  
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
20 
2 1  
22 
23 
24 
25 
26 
27 
28 
29 
30 

2 aspects 
(P) 

f (n) 

1 
2 
2 
4 
4 
9 

1 0  
22 
30 
62 
94 

192 
3 1 6  
623 

1 096 
2 1 22 
3856 
7429 

1 3798 
26500 
49940 
95885 

1 82362 
350650 
67 1 092 

1 292762 
2485534 
4797886 
9256396 

1 7904476 

4 aspects 
(P) 

F(n) 

2 
6 

1 2  
39 

1 04 
366 

1 1 72 
4 1 79 

1 4572 
52740 

1 90652 
700274 

258 1 1 1 2 
959 1 666 

3579 1 472 
1 34236 1 79 
505290272 

1 908947406 
7233629 1 32 

27488079 1 32 
1 047 1 5 3939 1 2  
399823554006 

1 5297553082 1 2  
586406656 1 554 

225 1 7998 1 36936 
866077032095 1 6  

333599972407532 
1 286742822580254 
4969489243995032 

1 92 1 5358696480536 

4 aspects 
(P') 

G(n) 

1 
4 
6 

23 
52 

1 94 
586 

2 1 3 1  
7286 

26524 
95326 

350738 
1 290556 
47981 74 

1 7895736 
67 1 273 1 5  

252645 1 36 
9545 1 0 1 1 4  

36 1 68 1 4566 
1 3744 1 83772 
52357696956 

1 999 1 2348954 
764877654 1 06 

2932035552786 
1 1 258999068468 
43303860638644 

1 66799986203766 
64337 1 44724 1 598 

248474462 1 9975 1 6  
960767949 1 405864 

From the numbers in Table 3, we can observe that G(n) � 2F(n) , which is to be 
expected, since the set of signatures is  the same in both cases but the group that acts 
on it doubles in size, with equality occurring exactly when n is odd, in which case 
R(n) = H(n) = 0. 

If n is large, then we expect that most signatures are asymmetric,  and so will have 
orbit size 4n. This would give us an approximate count of G(n) � 4n /(4n) which is  
necessarily an undercount since at  least the signature bbb . . . i s  symmetric .  If n = p, 
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a prime, then this i s  the only signature which i s  not in an orbit of size 4p, s o  rounding 
up the rough approximation will give the actual value 

4P + (p - 1 )4 4P p - I 
G(p) = = - + -- . 

4p 4p p 

In any case, these are large numbers . In the case of G( 1 2) ,  to scan over all the distinct 
patterns would take at least 1 4  days at a rate of one pattern per second and working 8 
hours a day. For G ( l 5 ) ,  the other case we examined, it would take more than a year. 

Note also that the results are valid only in the case the original motif is asymmetric:  
R(X) , M(X) and RM(X) are distinct from X. 

There are several other problems that the reader is  invited to explore; in several of 
these, other number sequences in Sloane's Encyclopedia [8] appear. 

1 .  Discover the formulas (and possible patterns) for the cases when the original motif 
has 180° rotation symmetry, (motif N), or mirror symmetry - horizontal (motif E) 
or vertical (motif A). 

2. Consider the problem for the two other 1 x n cases for two aspects, namely, the 
original aspect and one of its reflected images:  the sets {b, d} and {b, p}, and a 
suitable group of transformations.  

3 .  Consider the case where there are rn a  asymmetric motifs and rn s  motifs with 180o 
rotation symmetry, and discover the formula f (n ,  rna, rn5 ) . 

The 1 x 4 case: Escher revisited 

In Table 3 ,  we see that G(4) = 23, which is exactly the number of different planar 
patterns that Escher found in answer to his original problem. The occurrence of the 
same numbers is not a coincidence; in fact, the 1 x 4 strip pattern problem corresponds 
exactly to Escher's 2 x 2 problem discussed in [7]. 

In each case, there are four units that are filled with aspects of an asymmetric motif 
chosen from a set of four aspects. In our 1 x 4 case, the aspects are all obtained from 
aspect b by the action of a Klein-four group generated by the 180° rotation R and 
reflection M in a horizontal axis .  In Escher's case, the aspects were all obtained from 
aspect b by the action of a cyclic group of order 4, generated by a 90° rotation. 

Also, in each case, the group that acts on signatures for the patterns has order 16 ;  
i t  is a semi-direct product of a cyclic group of order 4 and a Klein four-group. In our 
1 x 4 case, the cyclic group is generated by T, and the Klein four-group is generated 
by R and M. In Escher's case, the cyclic group was generated by a permutation in
duced by a 90° rotation of the 2 x 2 block, and the Klein four-group was generated by 
permutations induced by horizontal and vertical unit translations of the 2 x 2 block. 

Table 4 shows the G(4) = 23 strip patterns with their signatures ordered 'lexico
graphically' with respect to the order b < q < p < d. The f (4) = 4 patterns with two 
direct aspects are in rows 1 ,  2, 5, and 1 4. 

It is well-known that there are exactly seven symmetry groups of strip patterns. 
The notation for these groups are : 1 1  (translations only-bb*); 1 2  (translations and 
180o rotations-bq*); m 1  (translations and vertical mirrors-bd*), 1 g  (translations 
and glide-reflections-bp*); mg (translations, 180° rotations,  vertical mirrors, glide
reflections-bdpq*); 1 m  (translations, glide-reflections and horizontal mirror- �*); 
and mm (translations ,  180° rotations, vertical mirrors, glide-reflections, and horizontal 
mirror-�� *) .  
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TABLE 4 

I bbbb 

2 bbbq 

3 bbbp 

4 bbbd 

5 bbqq 

6 bbqp 

7 bbqd 

8 bbpq 

9 bbpp 

10 bbpd 

II bbdq 

12 bbdp 

13 bbdd 

14 bqbq 

15 bqbp 

16 bqbd 

17 bqpd 

18 bqdp 

19 bpbp 

20 bdbp 

21 bdbd 

22 bdqp 

23 bdpq 

���������������� 

���A�������A���A 

���������������� 

��A�����������A� 

�������A������A� 

���������������� 

���������������� 

���������������� 

��A���A���A���A� 

�������A�������� 

�A�A���A�����A�A 

179 
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All five without reflection symmetry i n  a midline mirror parallel to the edges of the 
strip occur in the patterns in Table 4. Most patterns have only translation symmetry. 
Here is the distribution of symmetry types: 

Type 1 1  
Type 1 2  
Type m l  
Type 1 g  
Type mg 

1 3  patterns 
3 patterns 
3 patterns 
2 patterns 
2 patterns 

Escher pursued several generalizations of his original problem, and these in turn 
have spawned many others : generalize to an m x m block with aspects chosen from a 
set of n aspects; generalize to higher dimensions; if the motif has under-over weave, 
allow inversion of over-under relationships to be a group operation; color the pattern 
so that overlapping strands do not share the same color; automate the pattern-creating 
process and pattern-coloring process .  Many of these problems have been solved, and 
several are still under investigation. We list some published work on these problems in 
the references .  

Acknowledgment. We would l ike t o  thank Marko Petkovsek for fruitful discussion. We  also wish t o  thank a 
referee for a careful reading of an early draft, and the helpful suggestions provided. 
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Many teachers allow students to drop the lowest score from a sequence of quizzes, 
tests, or homework assignments . When the number of grades is large, some teachers 
will even allow students to drop several of their lowest scores.  A computer gradebook 
program would need to implement an algorithm to provide this  feature (see one of 
many examples of computer grade book software, for example, [ 4] ) .  A natural criterion 
to decide which grades to drop would be to drop the set of grades that maximizes the 
student's final grade. In some circumstances, it can be non-trivial to determine the 
best grades to drop. Using natural brute force methods, the time needed to find this  
optimal set of grades to drop can grow exponentially as the number of grades involved 
grows making these methods impractical even on fast computers . We discuss some 
unexpected behavior exhibited by this problem and provide a simple and very efficient 
algorithm for finding the best set of grades to drop. 

Grade dropping 

Assume that a teacher has given a sequence of k > 0 quizzes and will allow each 
student to drop r of the quiz grades. Suppose that for j = 1 ,  2, 3, . . .  , k a particular 
student has earned on quiz j a score of m j points out of a possible n; points. For 
simplicity assume earned scores are integers, and possible points are positive integers . 
Let N be an upper bound for the n j. We will refer to the set of r grades that are dropped 
as the delet ion set ,  and the set of k - r grades that are not dropped as the retained set . 
The goal is to identify the deletion set which will result in the student receiving the 
highest possible final grade, the opt imal delet ion set .  

If the teacher i s  only basing the student's  final grade on the student's  raw score, 
Lk=l mj , then finding the best grades to drop is  a simple matter of finding the r small
est

' m j values and dropping them. For example, suppose that Alan has earned the quiz 
scores shown in Table 1 .  If the teacher wants to drop two quiz scores, this  student 

TABL E 1: Alan 's Q u iz scores 

Quiz 1 2 3 4 5 
Score 2 6 24 3 6 
Possible 8 1 2  40 4 24 
Percentage 25 50 60 75 25 
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does the best by dropping quizzes and 4 since those are the two with the small
est number of points assigned, leaving the student with an accumulated quiz total of 
6 + 24 + 6 = 36, the largest possible sum of three scores. Notice that we dropped quiz 
4, on which the student scored a higher percentage than on any other quiz. 

On the other hand, if the teacher i s  basing the student' s  final grade on the ra
tio of total points earned to the total points possible, then the problem of finding 
the best set of r scores to drop is far more interesting. What we need is a subset 
S c K = { 1 ,  2,  3 , . . . , k} of k- r retained grades so that the ratio LJES m J ILJES n J 
is maximized. If all the quizzes are worth the same amount, that is ,  if all of the n J are 
equal, then this reduces to finding the r smallest m J values, just as it was in the above 
example. 

Paradoxical behavior 

Intuitively, one might suspect that a way to obtain an optimal solution would be to drop 
those quiz grades where the student performed the worst either by obtaining the small
est number of points or by obtaining the smallest percentage grade, m J (1 00%) In J .  
However, this is  not always the case a s  the following examples illustrate. Consider 
Beth's  quiz scores shown in Table 2. It is clear that Beth performed worst on quiz 3 
where she obtained the smallest raw score ( 1 )  and the smallest percentage grade (5% ) .  
If that grade is  dropped, Beth's  remaining quiz grades would give a mean score of 
(80 + 20) / ( 1 00 + 1 00) = 50%. On the other hand, if quiz 2 is dropped instead, she 
would receive a mean score of (80 + l ) / ( 1 00 + 20) = 67 .5%. The reason for this is 
that quiz 3 is not worth very many points , so its impact on the final score is much 
smaller than that of quiz 2 .  

TABL E 2: Beth 's Q u iz Scores 

Quiz 1 2 3 
Score 80 20 I 
Possible 1 00 1 00 20 
Percentage 80 20 5 

One conclusion is clear. As long as the number of grades to drop is smaller than 
the total number of grades,  the optimal retained set of grades will always contain the 
grade that has the largest percentage score. If more than one grade share the same 
largest percentage score, none of those grades will be dropped unless there are more 
of them than the number of retained grades .  For example, with Beth 's grades,  quiz 
I will not be dropped. The reason for this is that if the retained set S contains any 
grade whose percentage is not the largest percentage, the average L)ES m J !L.JES n J 
will be less than this  largest percentage. S will then contain at least one grade whose 
percentage is less than or equal to the average of the grades in S. Removing that grade 
and replacing it with a grade with the largest percentage will raise the average since 
both the removal and the addition raise the average. 

As seen with Beth 's grades,  the reverse argument does not work. That is ,  the grade 
with the smallest percentage score does not necessarily appear in the optimal deletion 
set. We can conclude that the grade with the smallest percentage will be among the 
grades retained if we want to get the smallest possible average score. But getting the 
smallest possible average score is not the goal . 

One might hope that the best way to drop a set of r grades can be constructed 
inductively by finding the best one grade to drop, and then finding the best grade 
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to drop from the remaining grades, and so on. This strategy turns out not to work. 
Consider Carl ' s  quiz scores shown in Table 3. If we wish to drop just one grade, then 
the best score is obtained by dropping quiz 4 yielding an average of ( 1 00 + 42 + 
1 4) / ( 1 00 + 9 1  + 55) = 63 .4% as compared to 32 .0% for dropping quiz 1 ,  60.6% for 
dropping quiz 2, and 63 . 3% for dropping quiz 3 .  If we need to drop two scores, it is best 
to drop quizzes 2 and 3 and retain quiz 4 to get the average ( 1 00 + 3 )/ ( 1 00 + 38) = 
74.6% as compared to 74. 3% for dropping quizzes 3 and 4, 73 .5% for dropping quizzes 
2 and 4, and 38 .4% for dropping quizzes 1 and 4. Notice that the optimal deletion set 
of two grades does not include the best single grade to drop. 

TABL E 3: Carl's Q u iz Scores 

Quiz 1 2 3 4 
Score 1 00 42 1 4 3 
Possible 1 00 9 1  55 38 
Percentage 1 00 46 25 8 

Also surprising is how slight changes to a problem can result in radically different 
results . To see this, consider Dale's eleven quiz grades displayed in Table 4. We con
sider several examples of Dale's  quiz scores where c and each of the bi are positive 
integers. Since quiz 0 is the only quiz with percentage over 50%,  we would not want to 
drop quiz 0. If A c {I, 2, 3 ,  4, 5 ,  6 ,  7, 8, 9, 1 0} is the set of other quiz grades retained, 
the resulting average score is 

TABL E 4 :  Dale's Q u iz Scores 

Quiz 0 2 3 4 5 
Score 20 + c  2 1 - b, 22 - b2 23 - b3 24 - b4 25 - b5 
Possible 40 42 44 46 48 50 
Percentage 50 + -�� 50 - !!1._ .42 50 - !!.1_ 

.44 50 - !!J.. .46 50 - b4 .48 50 - bs 
.50 

Quiz 6 7 8 9 1 0  
Score 26 - b6 27 - h 28 - b8 29 - bg 30 - bw 
Possible 52 54 56 58 60 
Percentage 50 - !!&.. 

.52 50 - !!l .54 50 - !!Jl.. 
.56 50 - !!2.. .58 50 - ':..ill .60 

First, let us set c = 4 and each of the b j = I. If we drop five quiz grades ,  the average 
score will be 

4 - L b I 
0.5 + jEA J 

= 0.5 - -:-::--=---

40 + LjEA nj 40 + LjEA nj 

So, to maximize this average we want A to represent the quizzes with the largest pos
sible values, n j • in order to make the denominator of the fraction as large as possible. 
Thus, the optimal deletion set is { 1 ,  2 ,  3, 4, 5 } .  
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But if we just change the value of c from 4 to 6, the average score becomes 

6 -� b 1 
0.5 + L.jEA J 

= 0.5 + --=---

40 + LjEA nj 40 + LjEA n; 

In this case we want A to represent the quizzes with the smallest possible values in 

order to make the denominator of the fraction as small as possible. Thus, the optimal 

deletion set is {6, 7, 8, 9 , 10 } .  A slight change in c completely changed the optimal 

deletion set. Note that if c = 5, all deletion sets which do not include quiz 0 result in 

the same average of 50%,  so every set A of size five gives the same optimal average. 

Next. consider what happens with Dale's  quiz scores when c = 1 1  and bj = 2 for 

each j. If we drop four quiz grades, the set A will have six elements, and the average 

score wi ll be 

1 1  - 2 LjEA bj 1 
0 .5 + = 0.5 - � 40 + LjEA nj 40 + L.jEA nj 

To maximize this average, we want to retain the quizzes with the largest possible 
scores, so the optimal deletion set i s  { 1, 2, 3, 4} .  If, on the other hand, we drop five 
quiz grades,  the set A will have only five elements, and the average score becomes 

1 1 - 2� b 1 
0.5 + L.;EA J 

= 0.5 + --=---

40 + LjEA nj 40 + LjEA nj 

To maximize this average, we want to retain the quizzes with the smallest possible 
scores, so the optimal deletion set is  {6, 7 , 8, 9, 1 0} which has no elements in common 
with the optimal deletion set when we dropped only four grades .  

Final ly, Dale 's quiz scores can be used to show that the optimal deletion set  when 
dropping four grades can overlap with the optimal deletion set when dropping five 
grades to whatever extent we like. Indeed, let t represent the number of grades we 
wish the two optimal deletion sets to have in common where t is  one of the numbers 
I ,  2, 3, or 4. Set bj = 3 for each j from 1 to t ,  and set b; = 2 for each j > t .  Let 
c = 1 1 .  If we drop four quizzes, and s is the number of retained quizzes which have 
their b j = 3, the set A will have six elements, and the average score will be 

1 1 - l::jEA bi l l - [s + 2(6 - s)l l + s 
0.5 + = 0.5 - = 0.5 - ------==---

40 + LjEA nj 40 + LjEA nj 40 + LjEA nj 

To maximize this average, s needs to be as small as possible (0), and we need to 
retain the quizzes with the largest possible score. This means the optimal deletion set 
is {l,2 , 3,4} . 

Now, if we drop five quiz scores, and s is the number retained quizzes which have 
their b j = 3, the set A will have five elements, and the average score becomes 

1 1 - LjEA bj ll - Ls + 2(5 - s) ]  l - s 0.5 + = 0.5 + � = 0.5 + . 
40 + LjEA n j 40 + L.jEA n j 40 + LjEA n j 

To maximize this average, s needs to be 0 or else the numerator 1 - s will be less 
than or equal to zero, and the average will not exceed 50%.  Thus, this average will be 
maximized only when we drop all the quizzes with bj = 3 and retain quizzes with the 
smallest possible score. This means the optimal deletion set is the set containing the 
quizzes with bj = 3 and as many of the high numbered quizzes as needed. Thus,  the 
overlap between the optimal deletion set when dropping four grades and the optimal 
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deletion set when dropping five grades will be exactly the set of t grades with the 
bj = 3 .  

Note that i t  i s  easy to construct examples similar to Dale's  grades which include a 
very large number of quiz scores that exhibit the same paradoxical behavior as in the 
examples just given. Even though such examples exist only when the possible scores, 
the n i values ,  are not all the same, paradoxical examples can still be constructed where 
the n i value are all very close to each other, for example, within 1 of a fixed value. 
These examples are reminiscent of Simpson's Paradox (see [6] ) which also deals with 
creating ratios by combining the numerators and denominators of other fractions .  

Algori thms for f ind i ng the opti mal del et ion set 

We return to the question of how one can identify the optimal deletion set when we 
want to drop r grades from a list of k quiz scores.  One brute force algorithm would 
have us calculate the average grade for each possible set of k - r retained grades .  There 
are several well-known algorithms for enumerating all such subsets (see virtually any 
book on combinatorics, for example [1 ] ) .  The arithmetic for calculating each average 
grade is straightforward. Unfortunately, even though checking any one average is very 
fast, the number of average grades which need to be calculated is given by the binomial 
coefficient e) which grows at a rate of k' I r ! .  For small k and r' these calculations pose 
no problems .  However, if a teacher wanted to drop just 10 grades from a list of 1 00 
grades ,  even on a computer this algorithm would take far too long to be of any practical 
value. 

The examples of the last section suggest that small changes in a problem can result 
in completely different optimal deletion sets . This indicates that we would run into 
difficulties by trying to implement either a greedy algorithm or a dynamic program
ming algorithm. These standard approaches to developing algorithms attempt to find 
solutions to problems by constructing an array of solutions to smaller problems which, 
in our case, have little bearing on the results of the original problem (see [3] for a 
discussion of how these methods are used to generate algorithms) . 

The opti m al drop function 

Our goal is to find the retained set S c K = { 1 ,  2, 3 ,  . . .  , k }  of size k - r so that the 
ratio 

LjES mi = q  
LjES ni 

( 1 )  

i s  maximized. For each j define fi (q ) = m i - q n  i · Then equation ( 1 )  i s  equivalent to 

(2) 

Notice the the left-hand side of equation ( 1 )  is  greater than q if and only if the left-hand 
side of equation (2) is greater than 0. 

Since each /j (q)  is a linear, decreasing function of q, for any given set S ,  

LjES /j (q) is  also a linear, decreasing function of q .  For a particular selection of 
retained grades, S,  the equation LiES /j (q)  = 0 is satisfied by the value of q which 
represents the average of the quizzes in S. We will have found the optimal set of 
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retained quizzes, Sbest • when we find the S where the associated average, qbesr . i s  as 
large as possible. Define the optimal drop function to be 

F(q) = max {L h (q) : S � K ,  l S I = k - r } ·  
JES 

(3) 

Since F i s  the maximum of a finite number of linear, decreasing functions, it must 
be a piecewise linear, decreasing, concave up function. Moreover, F(qbesr) = 0 since 
L . s f1· (qbest) = 0 while for any other S � K with l S I  = k - r, it follows that JE best 
L}ES fJ (qbest ) S 0. 

Consider, for example, Carl ' s  quiz scores from Table 2 where we drop two of four 
quizzes.  There are six possible sets S and six associated sums shown in Figure 1 .  

Figure 1 The s ix  poss ible sums of two Fj 

The function F in this case has the graph 

Figure 2 The graph of F 

The problem of determining the best set of r grades to drop is now equivalent to 
finding the subset S c K with l S I  = k - r and a rational number q ,  so that F(q)  = 
L JES fJ (q )  = 0. The advantage of considering the function F is that it is a simple mat
ter to evaluate F (q)  for any given q .  Indeed, given a list of k grades m 1 , m2 , • • •  , mk 
and k maximum possible scores n 1 ,  n2 , • • •  , nk .  a number, r ,  of grades to drop, and 
a real number q ,  one merely has to evaluate each h (q) = m1 - qn1 for each j = 
1 ,  2, . . .  , k. Then one identifies the k - r largest values among the h (q )  values .  The 
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set S becomes the set of j values corresponding to the largest fj (q ) values .  Finally, 
F (q)  is calculated as Lj ES h (q ) .  Since there are well-known efficient algorithms for 
identifying the largest values out of a collection of numbers (see virtually any book 
about data structures or algorithms, for example, [3] or [5] ) ,  F (q )  can be calculated 
efficiently. 

It remains to find the value of q where F (q) = 0. Since for a given S, L j ES fj (q ) 
is linear, the graph of F can change slope at a value of q only if the associated set S 
changes at this value of q .  For each q we can consider the collection of the k values 
of h (q) for j = 1,  2, 3, . . . , k. We can order these values in decreasing order. As the 
value of q changes, the values of the h (q )  change, and their order changes .  Notice 
that the values of S depend only on the order of the h (q ) ,  and hence the set S changes 
only when the order of fj (q) changes .  Since each h is  a continuous function, the order 
of fi (q)  and fj (q) can change only for values of q where fi (q)  = fj (q) .  Notice that 
since each f) is linear, this occurs at most once for every pair of i and j .  Therefore, the 
set S cannot change at more than (�) values of q since there are only that many pairs 
of i and j .  

The condition fi (q)  = fj (q) occurs when m i  - qni = m j - qn j • or when 

Thus,  if the graph of F changes slope at some value q , q has to be a rational number 
with denominator bounded by N (recall that N is  an upper bound for all the ni ) . S ince 

" m ·  Lj ESbest 1 

L 
= qbest . n · j ESbest 1 

qbest is a rational number with denominator no larger than (k - r )N .  
This can b e  used t o  find Sbest and qbest · One could identify all the values of q where 

fj ( q) = fi ( q) for some two values i and j .  Then, by evaluating F ( q) at each of those 
points, the function F can be constructed since it is  linear between each of those values 
of q. From this ,  one can easily find where F (q)  = 0.  But there are more efficient way s  
to find where F (q)  = 0 .  

The bisection a l gorit h m  

A n  even more efficient algorithm is  obtained b y  approximating the q where F (q)  = 

0 using the bisection method (see virtually any book about numerical analysis, for 
example, [2]) .  Since we know that qbest must lie in the interval between the minimum 
and maximum values of m j / n j ,  we begin by setting 

qhigh = max { m j } , 
J n j 

qlow = min { m j } , 
J n j 

and 
qmin + qmax 

qmiddle = 2 

Then we calculate F (qmiddie) and its associated set S. If F (qmiddie) < 0, we reset qlow 
to qmiddle ·  Otherwise we reset qhigh to qmiddle · Finally, we reset qmiddle to (qmin + qmax) /2. 
We repeatedly calculate qmiddle • F (qmiddie) , S, and reset qhigh • qlow • and qmiddle until 

1 
qhigh - qlow < 

2(k _ r )N2 • 

At that point the value of S is Sbest · Then, qbest can be calculated from Sbest · 
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How do w e  know that this final set S i s  Sbest ? To answer this, we carefully consider 
the function F .  Recall that F is piecewise linear, decreasing, and concave up. If F is 
linear in a neighborhood of qbest . then the distance between qbest and the next q where 
F changes slope is the distance between a rational number with denominator at most 
N and a rational number with denominator at most (k - r )N,  which must be at least 
1 / [ (k - r ) N2] .  So our approximation to qbest must be closer to qbest than to this closest 
point of slope change. Thus, the set S associated with this approximation is Sbest · 

Figure 3 q and CJbest when F is l i near near CJbest 

If F were to change slope at qbest . then our approximation to qbest would be asso
ciated with one of two different sets of grades where both of these sets are associated 
with the average qbest and, thus,  are equally good sets of grades to drop. 

Figure 4 q and CJbest when F is not l i near at CJbest 

A more efficient al gorithm 

An improvement can be found in the bisection algorithm by considering the geometry 
of the graph of F .  

Figure 5 shows several o f  the linear pieces which form the graph o f  F .  Suppose the 
value q 1  < qbest is chosen at random, and F (q 1 ) is calculated yielding the associated 
set S 1 of grades to keep. Consider the linear piece of the graph of F passing through 
the point (q1, F (q 1 ) ) .  Let q2 be the location where this linear piece crosses the x-axis .  
This q2 is the average of the grades of S1 . Since the graph of F is concave up,  q2 lies 
strictly between q1 and qbest · Iterating this process will yield a sequence of qj which 
reach qbest after finitely many steps.  At that point, F (q)  will be 0. If the value of q1 
happened to be larger than qbest . one iteration of this process will yield a q2 less than 
or equal to %est · 

Note that the determination of the point where F (q)  is 0 poses no problem. Each 
qj used in this algorithm will be a rational number. In practice, rather than calculating 
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Figure 5 Sequence of qj's approach i ng %est 

F ( q ) ,  one would calculate F ( q) multiplied by the denominator of q .  Doing this allows 
F (q ) to be calculated using integer (fixed point) arithmetic which is not subject to the 
round-off error and inaccuracy problems common when using real (floating point) 
arithmetic .  

Although it is not clear from the above discussion that this algorithm will run any 
faster than the bisection method algorithm, extensive running of simulations suggest 
that the algorithm always converges very rapidly requiring only a very small number 
of iterations to solve the most complicated problems.  For example, we randomly gen
erated many sets of quiz grades each containing 1 ,000 grades .  Using this algorithm to 
drop 300 of the 1 ,000 grades,  we never found a case where more than five iterations 
were needed to identify the optimal deletion set. This makes the algorithm particularly 
well suited for implementation in a computer gradebook program. Why does this al
gorithm converge so rapidly? Perhaps it i s  because it is  essentially Newton' s  method 
applied to the piecewise linear function F .  

Acknowledgment. We would l ike t o  thank the referees for their helpful suggestions i n  the preparation o f  this 
paper. 
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Introduction 

Origami , the fascinating art of paper folding, is a great source of both recreational 
and research mathematics .  There is no textbook on the subject, however, there are 
conference proceedings [ 1 ] ,  [3] ,  [8] ,  popular books [4] ,  and web sites [2] addressing 
the various mathematical aspects of origami. In this article, we consider a problem that 
was motivated by a particular compound polyhedral design. 

Figure 1 R i ng-Of-F ive-Cubes 

Internationally known origamist David Mitchell invented the model "Ring-Of-Five
Cubes" (see [6] ) ,  and the model "Twenty-Cubes" (see [5] , [7] ) .  As the name suggests, 
the Ring-Of-Five-Cubes consists of five cubes, arranged in a ring so that one comer 
of every cube is inserted in the dimpled comer of one of its neighbors (see Figure 1 ) . 

Alternatively, we may truncate two opposite comers on one face of each cube, and 
glue them together along the truncated vertices (which are now triangle faces) to form 
a ring. The Twenty-Cubes is an extension of this ring to what may be described as 
a dodecahedron of cubes. The cubes are centered at the vertices of a dodecahedron 
whose edges are represented by adjacent pairs of intersecting cubes (see Figure 2). 

Figure 2 Twenty-Cubes 
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For both of these models the comers are dimpled/truncated in such a way that an 

equal portion of each edge at a particular vertex is cut off. It turns out that these designs 
are "nonmathematical", or "invalid", that is, if made with mathematical precision, the 
ring could not be completed since the angle formed by two adjacent cubes would be 
just a bit larger than the required l 08o for a regular pentagon. This is not uncommon 
in origami : a model that is only an approximation of a valid, mathematically correct 
configuration can often be assembled without much difficulty due to the inherent im
precision in the paper folding process .  

Jeannine Moseley [9]  provided a short argument proving the invalidity of Ring-Of
Five-Cubes (and by extension the invalidity of the Twenty-Cubes), however, no further 
exploration was carried out concerning these designs.  

In this paper we describe the correct geometry for these models, and investigate 
similar configurations as well. First let us formulate the undertaking in a somewhat 
more general context. 

General ization 

In the Twenty-Cubes model either the cubes or the dodecahedron or both could be 
replaced by other regular polyhedra. Thus,  we arrive at the following generalization of 
the Twenty-Cubes model: 

Let A and B be Platonic solids. For each vertex V of B, place a copy A v of A in 
space so that Av is centered at V, and for adjacent vertices U and V, the copies 
Au and A v  intersect. Describe the geometry of the compound that consists of 
the collection of A v .  

We require that the intersection o f  two adjacent copies o f  A b e  simple, b y  which 
we mean that the truncation cuts off only one comer of A, and not more, the truncated 
portion is completely absorbed by the adjacent copy of A, and that every vertex of 
each copy of A is  involved in at most one intersection. 

In addition, we wish to consider compounds that exhibit a maximum amount of 
symmetry. Let us assume we are directly above a particular vertex V of B looking 
down on B and the copy of A at this vertex; we refer to this as the overhead view of the 
vertex V .  We would like to see the same symmetric configuration of vertices, edges,  
and faces for every possible choice of V. This can happen in one of the following two 
ways:  

Type l .  A vertex W of A coincides with V in the overhead view. 

Type 2. The center C of one of the faces F of A coincides with V in the overhead 
view. 

For both Type 1 and Type 2, we require rotational symmetry. More symmetry will 
be present when we have one of the following subtypes (all visualized in the overhead 
view): 

Type l .a. Edges of A with an endpoint at W lie on edges of B with an endpoint at V .  
Type Lb. Edges of A with an endpoint at W bisect the angles between adj acent edges 

of B with an endpoint at V .  
Type 2.a.  Edges of B with an endpoint at V go i n  the direction of vertices o f  F .  
Type 2.b. Edges o f  B with an endpoint at V g o  i n  the direction o f  edge-midpoints 

of F.  
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Figure 3 illustrates the four subtypes. Solid lines are used to represent the edges of 
A and dashed lines to represent the edges of B .  

\ \ \ 
' ' \ ' 

\ \ \ ' 

>---- - - -1(-- - - - - t>-- - - <J-- - - - -
, I I 

I I I I 
1 I I I 

Type 1 .a 

, , , 

Type 1 .b Type 2.a 

Figure 3 The fou r  sym metry types 

Type 2 .b 

David Mitchell ' s  Twenty-Cubes is of Type l .b. We will  see that there exists a Type 
l .a Twenty-Cubes as well .  

In some cases two types or subtypes may be regarded as one. For example, if A is 
a tetrahedron, for each vertex W there is a face F opposite W so that both W and the 
center C of F lie on the line connecting the center of A and the center of B .  Thus, 
a Type l .a configuration is also a Type 2.a configuration and vice versa. However, it 
seems natural to use Type 1 .a if the vertex W is closer to the viewer and Type 2.a if 
the opposite face F is  closer to the viewer. In the case when A is a cube, two opposite 
vertices can play the role of W and the configuration may be viewed as either Type 
l .a or Type l .b. Again, it is natural to base the type on the vertex that is closer to the 
viewer. 

Not all possible combinations of A and B are meaningful. The octahedron has four 
edges at each of its vertices while this number is five for the icosahedron and three for 
the rest of the Platonic solids.  For example, it is not possible to place tetrahedra at the 
vertices of an octahedron and to preserve the rotational symmetry. 

We shall focus on the subtypes allowing for maximum symmetry. An important 
consequence is that the intersection of two adjacent copies of A is regular in the sense 
that edges of one copy of A intersect edges of the other copy. We describe the inter
section using the truncating ratio. By truncating ratio we mean a triplet (for the most 
part) corresponding to the portions that are cut off from the edges at the dimpled ver
tex . For example, in the case of the Ring-Of-Five-Cubes and Twenty-Cubes,  the ratio 
1 /2 : 1 /2 : 1 /2, or equivalently, 1 : 1 : 1 ,  was used (as an approximation to the true 
ratio, as it turns out) . For a given edge length of A ,  the actual values of a ,  b, and c 
are determined by the edge length of B ,  and we consider these values unimportant. 
Instead, we are interested in their relative proportions and thus consider two ratios 
a : b : c and ka : kb : kc equivalent. 

The importance of the truncating ratio is signified by the fact that it describes all the 
essential aspects of the intersection geometry for the subtypes .  In addition, the values 
in the truncating ratio are used directly in the folding pattern when origami models of 
these configurations are made. If we relax the symmetry requirements and consider 
Type 1 and 2 in general , the geometry will become more complex and the truncating 
ratio alone will not be sufficient to describe how two copies of A intersect. 
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Twenty-Cubes 

Let us consider a Type l .b configuration that is suggested by David Mitchell ' s  design. 
Figure 4 shows two adjacent intersecting cubes in the dodecahedron of cubes (compare 
with Figure 2) .  Assuming unit edge length for the cubes, let a be the length of 0 P and 
b the length of 0 Q . Then the length of 0 R is also a due to symmetry. 

Figure 4 Two i ntersecti ng cubes 

In fact, we can exploit symmetry further. The points S, P, and T, together with two 
more points not shown in the diagram form a regular pentagon providing one way to 
calculate d,  the half-length of ST :  

. vfs + l 
d = ( 1  - a).J2 sm 54o = ( 1  - a).J2 

4 

For a second way to calculate d, note that the points S and T are mirror images of 
each other with respect to the plane through P ,  Q ,  and R, also because of symmetry. 
Hence, d is the distance between the point T and the plane P Q R.  Choose a suitable 
coordinate system, say, with the origin at 0 and with P, Q, and R on the x-, y-, and 
z-axis, respectively. Then we have the following coordinates :  

P (a ,  0, 0) ; Q (O, b ,  0) ; R(O, 0, a); T ( l ,  1 - a , 0) 

The equation of the plane through P ,  Q ,  and R is 

bx + ay + bz - ab = 0 

and d, the distance between this plane and the point T is 

d 
_ l b ( l )  + a ( l  - a) +  b (O) - ab l _ l (a + b) ( l - a) l -

.../b2 + a2 + b2 -
.:....:..._

../---,=a""2=+=2:::=b:=::2;:-'-'-

Comparing the two expressions for d, we obtain the following quadratic equation: 

(vfs - l )a2 - 8ab + 2(vfs + l )b2 = 0 
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The solutions are 

J5 +  1 
a 1  = (2 + h) 2 b � 5 .5243 , 

J5 +  1 a2 = (2 - h) 
2 

b � 0.9478 

The solution a2 is  the one we expect for the Twenty-Cubes design; the correct truncat
ing ratio in this case is 

(2 + .J2) (J5 - 1 )  
a : a  : b = 1 : 1 : bfa = 1 : 1 : � 1 : 1 : 1 .055 

4 

In a paper-folding project, particularly when the sizes are smaller, this is hardly distin
guishable from the ratio 1 : 1 : 1 .  

What about a 1 ? It is the Type 1 .a solution; Figure 5 shows this Twenty-Cubes design 
with truncating ratio 

1 : 1 : 
(2 - .J2)(J5 - 1 )  

� 1 : 1 : 0. 1 8 1  
4 

As we mentioned earlier, certain configurations may be associated with two types, and 
this is the reason why we have obtained the Type l .a solution also, when in fact we 
assumed a Type 1 .b configuration. 

Figure 5 Twenty-Cubes, Type l .a 

Pl atonic solids buil t from cubes 

The calculations of the previous section can be extended in an obvious manner. Re
place 54° by 45o to get a Cube-Of-Cubes (Eight-Cubes) compound. Replace 54° by 
30° to get a Tetrahedron-Of-Cubes (Four-Cubes) configuration. In the former case this 
is the equation: 

2ab - b2 = 0 
Since for a simple intersection we expect positive lengths, only the Type I .b solution, 
b = 2a , implying a truncating ratio I : I : 2, is of interest. 
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The equation for the Tetrahedron-Of-Cubes is 

a2 + 4ab = 0 

1 95 

This equation has no positive solution, implying a configuration that is non-simple 
(which we do not consider) . Indeed for four cubes to be positioned at the vertices of a 
tetrahedron, they would have to intersect one another at more than one comer. 

The remaining two cases are the octahedron of cubes and the icosahedron of cubes .  
The latter is not possible because of the incompatible symmetry groups .  On the other 
hand, it is possible to build an octahedron from cubes.  The Type 2 .a configuration has 
the truncating ratio l : v'2 : ,Ji; we leave the calculations to the reader. 

A l l configurations 

Using an approach similar to that in the previous two sections, it is possible to deter
mine the truncating ratios for all choices of A and B .  However, some of the configura
tions are difficult to visualize and/or their computation may be rather tedious .  

A better approach is to  use  an appropriate computer algebra system, both for vi
sualization and computation. This method has its own challenges but it appears to be 
easier than doing the calculations for each case analytically. 

For visualization we define and display B centered at 0 ,  and A v ,  a copy of A ,  
centered at a vertex V of B .  I t  i s  unlikely that A v i s  correctly oriented b y  default, thus 
it needs to be rotated. A rotation can be applied to make certain that one of the vertices 
(or face centers) of A v  lie on the line through 0 and V .  Then a second rotation may 
be applied to obtain a particular symmetry type. Once A v is  correctly oriented, the 
remaining copies of A can be created by applying suitable transformations to A v ,  or 
alternatively, the above procedure could be repeated for each vertex of B and the entire 
compound can be displayed. 

To compute the truncating ratio, two correctly oriented adjacent copies of A are 
needed. First we determine the intersection point for each corresponding pairs of 
edges .  Then the distances between these intersection points and the vertex of one of 
the copies of A that corresponds to the corner involved in the intersection can be com
puted. One of the challenges we encountered was to deal with the pages-long formulas 
that may occur for, say, the coordinates of a cube that was rotated a few times.  If no 
explicit simplification is requested, the complexity of some of the expressions may 
overwhelm the computer algebra system or the computed values in the truncating ratio 
may not be in a desirable compact form. 

The table below shows the complete list of Type l .a, l .b, 2.a, and 2.b configurations.  
Most of the results were obtained by using the computer algebra system Maple. Some 
were obtained analytically, and some were obtained both ways.  

In each cell the ratios are preceded with the type in bold face .  If a cell  is  empty, the 
configuration is not possible either because of incompatible symmetries or adj acent 
copies of A intersect in a non-simple fashion. When 4 (A = octahedron) or 5 (A = 
icosahedron) edges are involved in the intersection, the corresponding values occur 
cyclically in the truncating ratio. 

Fol ding patterns 

From a paper folder' s  point of view, the Twenty-Cubes,  and the other configurations 
in this paper, belong to the field of modular (or macro modular) origami. In modular 
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origami, several pieces of paper are used to fold individual, often identical, compo
nents that make up the final model. There are differing opinions about what should 
be allowed in true origami; some insist on square-shaped paper, others would allow 
any shape and even the use of scissors and tape or glue. The following example will 
perhaps interest most readers and satisfy the majority of paper folders . 

3 
\ I I \ 4 .... · ... ,' ,' 

', 
_ _ _  ..:·"( ,' \ 

\ I \ 
\ I \ 

\
. ,' � �-\ ,' , ' 3'··· .... 

4 

4 4 
' , 3./ ...... 4 ,' ,' :..£. .. _ _ :···:.,,' ,' 

I \ I 
,' t\ - - - -.  .. : ,' ,' ....... 4 4./ '. 

I I \ .. _./ \ 

3 3 
Figure 6 Fo ld ing pattern for the E ight-Tetrahedra 

Figure 6 shows the crease pattern for an Eight-Tetrahedra (Cube-Of-Tetrahedra) 
compound using two parallelograms each consisting of four equilateral triangles . The 
valley- and mountain folds are shown with dashed and dotted lines, respectively. The 
3s and 4s in the diagram correspond to the values in the truncating ratio 3 : 4 : 4 .  

Note that the size of the truncations does not matter so long as they are all  the 
same and the two adjacent vertices truncations do not intersect. Hence, assuming the 
smaller side of the parallelogram is 1 ,  the line segments marked by 4 could have a 
length between 0 and 1 /2.  

Both pieces are needed for a tetrahedron; with glue one could use one of the two 
pieces only. For proper assembly, one piece must be left-handed and the other right
handed as shown in the picture. 

The easiest way to make this model is to photocopy Figure 6 (perhaps after enlarg
ing it) , cut out the parallelograms, and fold them up along the crease lines.  The two 
pieces wrap around each other so that the leftmost (large) equilateral triangle of the 
left parallelogram, rotated by 60 degrees counterclockwise, lies on the third (large) 
equilateral triangle of the right parallelogram. 

A folding sequence, that would follow strict origami rules, can be found as well .  
David Mitchell [6]  has a method to fold the parallelograms in Figure 6 from a rectan
gular piece of paper (see also T. S. Row [10] on how to fold equilateral triangles and 
other geometric objects) .  Adding the dimples would require finding 3 /4 of a given dis
tance, which can be done by two midpoint constructions. For an optimal solution one 
would try to minimize the number of folds and avoid creases on the outside surface of 
the model. 

In all, four tetrahedra with two dimpled comers, and four tetrahedra with one dim
pled comer will be needed. To make a tetrahedron with just one dimpled comer, ignore 
the folds for any one of the two dimpled comers in Figure 6. Once the tetrahedra are 
made, they can be assembled without using tape or glue; resistance will hold them to
gether. (It may help if one uses construction paper-less slippery than computer paper, 
and if the dimples are at least as large as suggested by Figure 6 .)  The Eight-Tetrahedra 
model is shown in Figure 7 .  

The assembly process is an  entertaining puzzle in  itself: a comer of  a tetrahedron 
may be inserted into the dimpled comer of another in three different ways but at most 
one of the three possibilities will work. We encourage the reader to make his or her 
own Eight-Tetrahedra and to experiment with the other configurations in this paper as 
well. 
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Figure 7 E ight-Tetrahedra 
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Erratu m 

In the February 2006 issue of this M AGAZINE, in the note The Cross Ratio Is 
the Ratio of Cross Products ! by Leah Wrenn Berman, Gordon Ian Williams, and 
Bradley James Molnar, 54-59, the passage below was inadvertantly deleted from 
page 58 during the editing process. This quotation from Eves forms the basis for 
the discussion in the final three paragraphs of the note. The editor apologizes for 
this omission. 

Essentially the notation (AB ,  CD) was introduced by Mobius in 1 827. He 
employed the term Doppelschnitt-Verhaltniss, and this was later abbrevi
ated by Jacob Stenier to Doppelverhaltniss, the English equivalent of which 
is double ratio. Chasles used the expression rapport anharmonique ( anhar
monic ratio) in 1 837 , and William Kingdon Clifford coined the term cross 
ratio in 1 878 .  
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On Saturday, March 1 3 ,  2004, a competition called The Bernoulli Trials was held at 
the University of Waterloo for the nth time, where n = 8 . A total of 55 undergraduate 
students participated, all sharing insatiable appetites for mathematical problems and 
freshly baked croissants . 

The Bernoulli Trials consists of a number of rounds,  each of which involves contes
tants having to decide whether a mathematical statement is TRUE or FALSE, without 
the aid of a calculator. Rounds usually last I 0 minutes, unless the organizers feel partic
ularly malicious or hungry, in which case the round may be shortened (for example to 
2 or 5 minutes).  At the end of the round, students submit only their decision of TRUE 
or FALSE, obtained by some combination of skill, intuition and chance. Contestants 
can continue until they have made two mistakes, whereupon they are eliminated. The 
competition continues until one contestant is left standing and is declared champion. 

The 2004 competition lasted a total of 14 rounds, and produced quite an exciting 
finish. After 8 rounds ,  only six contestants remained standing, each of whom had an
swered one problem incorrectly. So it was sudden death ! In round 9, Iouri Khramtsov 
and Marcin Mika succumbed to sigma-itis and were eliminated. Round 1 0  saw the 
elimination of Yuli Ye, leaving only Raymond Chiu, Ralph Furmaniak, and Feng Tian, 
all of whom then answered correctly in round 1 1 . 

As round 1 2  closed, Ralph hastily changed his answer, leaving all three remaining 
contestants with an incorrect answer. After much deliberation and consultation of the 
BT Rule Book, the organizers determined that they could not eliminate all three re
maining contestants and thus keep the prizes for themselves, so Raymond, Ralph, and 
Feng continued on. 

Ralph redeemed himself in round 1 3  by being the only contestant to answer cor
rectly, and so was declared champion. In March 2004, Ralph Furmaniak (from Lon
don, ON) was a first-year student and a verteran of the IMO. It would later be known 
that Ralph was a Putnam Fellow in the 2003 Putnam Competition. 

Round 14 was a two-minute tie-breaker for second place, which saw Raymond 
Chiu prevail as second place finisher, leaving Feng Tian in third place. (Our top-secret 
proof-reader did assure us that he managed to differentiate the given function 45 times 
in 1 minute 38 seconds, so 2 minutes seemed a reasonable length of time. )  Thankfully, 

1 99 
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the organizers were prepared with enough problems for the 1 4  Rounds here. In fact, 

the organizers always bring infinitely many rounds to the Contest. (They could always 

make each round half as long as the previous round and still be done before lunch.)  
The winners received a variety of prizes, from indescribable medals to mathemat

ical T-shirts to stone plates. Congratulations go out to all competitors for a thrilling 
competition. 

Here are the problems. 

1 .  TRUE or FALSE? 
In the following list of statements, there is exactly one false statement: 

(a) 20043 - 2004 is divisible by 3 ;  
(b) 20045 - 2004 is divisible b y  5 ;  

(c) 20047 - 2004 i s  divisible b y  7 ;  

(d) 20049 - 2004 is divisible b y  9 ;  

(e)  20041 1  - 2004 is divisible by 1 1 . 

2. TRUE or FALSE? 
The equation 

sin4 x - sin x = cos x - cos4 x 

has no solutions in the interval (0, n /2) . 

3 .  A regular polygon has 2004 sides, each of which has length 1 .  
TRUE or FALSE? 
The area between the circumscribed and inscribed circles of the polygon is greater 
than 1 .  

4. TRUE or FALSE? l (tan (tan- 1 (98T 1 ) - tan-\2584- 1 ) )r 1 J = 1 597.  

5 .  We are given 36 squares arranged on a board in a 6 x 6 array. Therefore, there are 
6 rows,  6 columns, and 22 diagonals ,  as shown in the figure. 

-t - - - - - - � - - - - - -+ · ·  - - - - t - - - - -+ - - - - - - t-' ' 1- - - - : -+--- - -+- - f - - - : - - - - - -+- -
' ' ! ' ' - : - - - - - - - : - - - 1- - : - - - 1- - - - : - - - - - - : - - - - - - - :-

' ' 1- - - - : -+-- - - -+- -� - - ' - - - - -+ - -
- - -i . - .  - - - - � - - - - - - - ; - . -

-, . - - - - - - . - - - · · · · · · ·  - - - . - - - - - - - . - - ·  - - - - ,-

TRUE or FALSE? 
It i s  possible to place 12 counters on the squares of this board-no 2 on the same 
square-so that each of the rows,  columns, and diagonals of the board has at most 
2 counters . 

6. TRUE or FALSE? 
The number of pairs of positive integers (x , y ), each less than 2004, whose arith
metic mean exceeds their geometric mean by I is 62. 

7 .  Let an be the nth positive integer whose digits do not include 9 when written in 
base 10 .  
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TRUE or FALSE? 

00 1 L - diverges. 
n= l  an 

2 0 1  

8 .  In the figure, the circle shown has its center 0 on AC ,  and i s  tangent to AB  and 
to BC .  We also have A O  = 3, AB  = 4, and BC = 8 .  

B 

TRUE or FALSE? 
The area of !:::.ABC is greater than or equal to 1 2.J2. 

9. Let 

s = 1 . 3 . 5 + 2 . 4 . 6 + 3 . 5 . 7 + . . .  + 2004 . 2006 . 2008 

TRUE or FALSE? 

1 0. Let A = 20042 + 1 7. 
TRUE or FALSE? 
Among the �ve numbers 

4S = 2004 · 2005 · 2008 · 2009 

A ,  A + 1 ,  A + 2, A + 3 ,  A + 4  

is a number that is relatively prime to the product of the other four. 

1 1 .  TRUE or FALSE? 

(There is a total of k 2s under the outermost square root.)  

1 2 . TRUE or FALSE? 1 1  x 2004 
_ 1 

--- dx < ln 2004. 
0 ln x -

1 3 .  By an ellipsoidal ball in �3 , we shall mean an ellipsoid in �3 together with its 
interior. Let a set of ellipsoidal balls D1 , • • • , Dn be given, as well as a plane 7r .  
Suppose that D; and D i have nonempty intersection whenever i =/= j .  
TRUE or FALSE? 
It is always possible to find a plane ;r ' parallel to ;r that intersects each ellipsoidal 
ball .  
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14. TRUE or FALSE? 
The coefficient of x45 in the power series expansion of 

is 88 . 
Here are the solutions to  the problems . 

1 .  TRUE. 
The divisibility statements for 3, 5, 7 ,  and 1 1  are special cases of Fermat's  Little 
Theorem. Since 9 is not prime that case does not follow from this theorem. It 
can be checked that 2004 is congruent to 6 mod 9. Since 2004 is divisible by 3 it 
follows that 20049 is divisible by 9. 

2 . TRUE. 
In the interval (0, n /2) , sin x and cos x belong to (0, 1 ) .  Thus, 
0 < sin4 x < sin x < 1 and 0 < cos4 x < cos x < 1 ,  so 

sin4 x - sin x < 0 < cos x - cos4 x .  

3 .  FALSE. 
If the radius of the inscribed circle is r, then the radius of the circumscribed circle 
is Jr2 + ( 1 /4) by the Pythagorean Theorem. 

So the area between the circles is 

n (r2 + 1 /4) - n r2 = n/4 < 1 .  

4. TRUE. 
Since 987, 1 597, and 2584 are Fibonacci numbers, and 

(F2n-1)2 = F2n-2F2n + 1 

(where the numbering starts with F0 = 0 and F1 = 1 ) , 
1 1 + I I 

987 2584  
tan (tan- 1 (987- 1 ) - tan- 1 (2584- 1 ) ) 

= 
9�7 - 25

1
84 

2584(987) + 1 = 
1 597 

= 1 597. 

5. TRUE. 

• • 

• • 

• • 

• • 

• • 

• • 

6. FALSE. 
We must have 

1 2 (x + y) = .JXY + 1 .  
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Rewriting this as x + y - 2 = 2fo and squaring both sides, we get 

x2 + y2 + 4 - 2xy - 4x - 4y = x2 - 2 (y + 2)x + (y - 2) 2 = 0 

By the quadratic formula, x = (y + 2) ± ,JSY. We will count the number of pairs 
with x < y, and double this total . If x < y, then x = (y + 2) - 2./2Y. Since x 
and y are integers, then y must be twice a perfect square. S ince y < 2004, then 
y = 2 ( 1 2) ,  2(22) ,  2(32) ,  . . •  , 2(3 1 2) = 1 922. Each gives a positive integer for x 
except for y = 2. So there are 30 values of y giving 30 pairs in this  case, and 60 
pairs in total . 

7 .  FALSE. 
There are 9 ( 1 <f- I )  positive integers with k digits . The reciprocal of each number 
is at most 1 /l Ok- I .  Of these integers, there are 8(9k- I )  that do not use the digit 9. 
(There are 8 possibilities for the first digit and 9 for each of the remaining.) There
fore, 

8. FALSE. 
Since 0 is centre of the circle tangent to AB and BC it follows that 0 B bisects 
LB .  Therefore 

A O  O C  
A B  

= 
BC ' 

implying that OC = 6. Thus AC = 9. The semiperimeter of D.ABC is therefore 
2 1 /2. 

Using Heron's  formula for the area of a triangle we get 

9. TRUE. 

A =  �2
2
1 . ( 2; _ 4) . ( 2

2
1 

_ 8) . (�1 
_ 9) = � J455 

< j 9 (464) = v'26I 
1 6  

< h88 = 1 2v'2. 

S = f; cn - 2) (n) (n + 2) = (f; n3) - 4 (f; n) 
= (t n3) - 4 (t n) - 1 3 - 23 + 4 ( 1 )  + 4(2) 

N2 (N + 1 )2 
= 

4 
- 2N(N + 1 )  + 3 

= � [N2 (N + 1 )2 - 8N(N + 1 )  + 1 2] 

1 = 4 [N(N + 1 ) - 2] [N(N + 1 ) - 6] 
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1 = 4 (N + 2) (N - l ) (N + 3) (N - 2) 

1 = 4 (N - 1 ) (N - 2) (N + 2) (N + 3) 

as required. 
1 0. TRUE. 

The result is true for any positive integer A, not just the one given. Two numbers 
that differ by at most four can have only factors :::=: 4 in common. Thus the only 
prime factors that any two can have in common are 2, 3. There are at least two 
odd numbers in any consecutive set of five numbers . Taking two consecutive odd 
numbers from the list, say B ,  B + 2, we observe that one of them will not be 
divisible by 3. As this number is not divisible by 2, it must be relatively prime 
to all of the other numbers . Thus it is relatively prime to the product of the other 
numbers . 

1 1 . FALSE. 
/ 1 + COS X 

Using the fact that cos ( �x)  = V 2 
, we can determine that 

where there are k - 1 2s in the numerator. 
Using the fact that sin (n j2k ) = j'

I
-'--
_
--"-'-'

c-os
_

2
_
(
_
n
_
/
_
2

_
k ) , we get that 

sin Jr x 
Using the fact that lim -- = Jr ,  we get that lim 2k sin (n j2k ) = 7r ,  so 

x --+ 0  X k--+ oo 

where there are k - 1 2s under the outermost square root. 
1 2 . FALSE. 

Let 

Then 

1 1 x"' - 1 g (a) = -- dx . 
0 1n x 

g' (a) = t x"' dx = -
1
- ,  

lo a +  1 
provided that a > - 1 .  Integrating we get 

g (a) = ln(a + 1 )  + C. 

Checking a = 0 we see that C = 0. 
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1 3 .  TRUE. 

Given such a set of ellipsoidal balls, project the ellipsoidal balls orthogonally onto 
a line .e perpendicular to Jr. By Helly 's theorem in dimension one, these projec
tions must have a common point. Take a plane n' parallel to n through this com
mon point. 

1 4. FALSE. 

so we need to count the number of 4-tuples (a , b ,  c, d) of nonnegative integers 
such that a + 3b + 9c + 1 5d = 45 . First, a must be a multiple of 3, say a = 3A ,  
which leads to A +  b + 3c + 5 d  = 1 5 .  

d = 3 gives A = b = c = 0. ( 1  way. ) 
d = 2 gives c = 1 or 0 giving 3 and 6 possibilities for the pair (A , b) . (9 ways. )  
d = 1 gives c = 3 ,  2, 1 or 0, giving 2, 5 ,  8, and 1 1  possibilities. (26 ways . )  
d = 0 gives c = 5 ,  4,  3 ,  2 ,  1 ,  or  0, giving 1 ,  4, 7 ,  1 0, 1 3 , and 1 6  possibilities .  
(5 1 ways . )  

There are 87 ways, so the coefficient of x45 is  87. 
Since the initial writing of this  Note, the Bernoulli Trials were held in 2005 for the 

(n + l ) st time. After 9 rounds of competition, only 7 students remained standing, and 
of these only 1 had made no mistakes to that point. Round 1 0  saw the elimination of all 
but one of the remaining competitors , leaving the winner, Lino Demasi .  But then ties 
needed to be broken so these 6 eliminated competitors were brought back in for Round 
1 1 , which eliminated all but two of them: Ian Baillargeon and Ralph Furmaniak. In a 
valiant effort to break this tie for 2nd/3rd place, the organizers tried to get them to 
crack under pressure. After two rounds with equal responses, a tie was declared for 
2nd/3rd place. 

The Comparison Test
Not J ust for Nonnegative Series 

M I C H E L E  L O N G O  
U n ivers ita Catto l ica del  Sacra Cuore 

M i l a n ,  I ta l y  
m i c h e l e . l ongo @ u n i catt . i t  

V I N C E N Z O V A L O R !  
U n ivers i ta deg l i  Stu d i  d i  F i renze 

F l o rence, I ta l y  
v i n cenzo.va l or i @ d md . u n ifi . it 

Is it possible to generalize the Comparison Test to generic real series? More precisely, 
is it true that, given an ::::; bn ::::; en for all sufficiently large natural numbers n ,  the con
vergence of L bn follows from the convergence of L an and L en ? At first glance, 
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many of u s  (certainly the authors) could argue something like "If it were true then it 
would certainly appear in some of the books standing on the shelves in my office." As 
a matter of fact, all the books on the authors ' shelves state the test only for nonneg
ative series. In particular, Hardy [5, p. 376, lines 1 -3]  considers possible extensions 
involving the comparison of only two series and affirms : " . . .  there are no comparison 
tests for convergence of conditionally convergent series." 

A generalization of the comparison test The Comparison Test is usually stated 
only for nonnegative real series ,  both in calculus books [1 ,  4, 5, 8] and in more spe
cialized texts [2, 3, 6, 7] . There could be many reasons for this ;  however, the most 
immediate generalization can be used to establish the convergence or divergence of 
many series for which standard tests do not apply. Also, the proof is so straightforward 
that, at least, it could be considered as an exercise in calculus courses. The Comparison 
Test can be generalized as follows. 

TH EOREM . Let L an , L bn , and L Cn be three real series such that an :S bn :S Cn 
for all sufficiently large n E N, then: 

(i) the series I:: bn converges if I:: an and I:: Cn converge; 
(ii) the series I:: bn diverges to +oo ifL an diverges to +oo; and 

(iii) the series I:: bn diverges to -oo ifL Cn diverges to - 00. 

Proof Assume an :S bn :S Cn for all natural numbers n ::0: N .  (i) If I:: an and 
L Cn converge, then L (en - an ) converges. The relation 0 :S b, - an :S en - an 
and the usual Comparison Test imply that I:: (bn - an )  converges . Since I:: bn = 
I:: (b, - an ) + I:: an , we conclude that I:: bn converges . Parts (ii) and (iii) follow 
from the relation 

which is true for each M :::: N. • 

In the Theorem, the only requirement on I:: an and I:: en is that they converge. 
Clearly, the case of interest is that of conditionally convergent series (that is, conver
gent but not absolutely convergent, see Hardy [5, p. 375] ) .  It is worth noting that the 
proof of our Theorem can be adapted to show that if an :=:: bn and one of the two series 
I:: an or I:: bn converges then the other must either converge or else have an infinite 
limit. We give now an example. 

EX AMPLE 1 .  Consider the alternating real series I:: bn where the generic term ( (- 1 )" ) bn = ln 1 + ---;;;-

depends on the positive real parameter y .  Normally, we would apply the Alternating 
Series Test (also known as Leibniz Test) which states that an alternating series I:: bn 
converges if I bn I is monotonic decreasing and bn ---+ 0 [3, p. 55] . However, the test 
applies in this  case if and only if y ::0: 1 ,  because otherwise the sequence I bn I is not 
decreasing. To see this ,  observe that, if n is even, 

l ln ( l +
(- l )" ) l = ln ( l + �) = ln ( l + 2 ) ; n Y n Y 2n Y - 1 + (- l )" 
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whereas, if n is odd, 

I bn I = - In ( I - ...!._) = In ( I + _
I_) = In ( I + 2 ) . n Y nY - I 2nY - I + (- It 

Therefore, I bn I = In ( I  + 2/ (2nY - I + ( - IY) )  for every n E N and 

l bn l :=:: I bn+ ! I � n Y :S (n + I ) Y + (- It+ ! . 

2 0 7  

The second inequality is verified for all positive y i f  n is odd, but holds only for 
y :=:: 1 if n is even. Furthermore, L bn is absolutely convergent if and only if y > I ,  
as follows .  The power series expansion of ln( l  + x)  allows us to assert that l x l / 2  :s 
l ln ( I + x) l :S 2 1x l , as long as l x l is sufficiently small;  this in tum implies that 

0 < I /2nY < I In ( l  + (- It jnY ) I < 2jnY 

for sufficiently large n and the usual Comparison Test yields the result. 
This analysis shows that we cannot use standard tests to study L bn when 0 < y < 

I ,  so let us proceed as follows :  First observe that 

x - 3x2 /4 :S ln ( I  + x) :S x - x2 /4 

in a neighborhood of zero (again from the power series expansion), so the substitution 
x = (- l )n jnY yields 

-- - -- < In I + -- < -- - --
(- It 3 ( (- It ) (- It I 
nY 4n2Y - nY - nY 4n2Y 

for sufficiently large n .  Second, notice that by the Alternating Series Test, L (- I ) n In Y 
converges for all y > 0 whereas L I j n2Y converges if and only if y > I /2 . Finally, 
by setting an = (- It jnY - 3j4n2Y and Cn = ( - I )n jnY - l j4n2Y , an application of 
our Theorem enables us to conclude that 

I I 
if y > 2 ,  then I:>n converges, and if 0 < y :S 2 ,  then L bn diverges to - oo .  

The previous example suggests a general procedure that can b e  useful t o  decompose 
the general term of the series into simpler quantities, which can be analyzed separately. 
Our generalized Comparison Test then applies to give information about the original 
series . This procedure is summarized in the following proposition. 

PROPOSITION.  Let L an be convergent and suppose f is a real valued function 
such that, in a neighborhood ofO, 

f (x) = ax + f3x2k + o (x2k ) , f3 ::f= 0, k E N. 

Then E f (an ) converges if and only ifL (an )2k converges. 
Proof. By assumption there exists t: > 0 such that for l x I < t: we have 

( l f3 1 ) ( l f3 1 ) ax + f3 - 2 x2k :S f (x) :S ax + f3 + 2 x2k . 

Hence, there exists Ne such that, for each n > Ne ,  
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Now, convergence of L f (an ) follows from convergence of L (an ) 2k and part (i) of 
the Theorem. Conversely, if L (an )2k diverges then parts (ii) and (iii) imply that also 
L f (an ) diverges. • 

REM ARK .  The Proposition cannot be extended to the case where the expansion 
ends with an odd power (Examples 4 and 5 show this point) . Nevertheless, if L an 
converges and 

then 

f (x) = ax + f3x2k+ 1 + o (x2k+ I ) , f3 oft 0, k E N, 

L \ an \ 2k+ 1 converges ::::} L f (an ) converges. ( 1 )  

Finally, notice that a sufficient condition for the convergence of L \an \ 2k+ l is the con
vergence of L (an )2i for some i E { 1 ,  2, . . .  , k } .  

This Remark gives only a sufficient condition for the convergence o f  L f (an ) .  
For thi s reason, i t  may be possible to obtain more information about the convergence 
of the series by refining the Taylor expansion of f. For example, consider the se-

ries L arctan ( ( - 1  t I .rn) . In this case L ( ( - 1  t I .rn) Zk+ I converges for all nat
ural numbers k whereas it converges absolutely if and only if k ::::: 2; so if we use 
arctan x = x - x3 13 + o ( x3 ) , we can say nothing about the convergence of the series 

since L I (- It I .rn1 3 does not converge; on the contrary, if we consider the expan
sion up to the fifth order we can conclude that the series is convergent. A less trivial 
example of this occurrence is the following. 

E X A M PLE 2. Consider the alternating real series L bn , whose generic term, de
pending on the positive real parameter y, is  defined by ( (- It 1 ) bn = tan -- + --1 . 

nY  nY+ 

The Taylor expansion of tan x up to the third order is tan x = x + x3 13 + o (x3 ) . The 

series L; an = L ( (- It lnY + l lnY+ 1 )  converges for all y > 0, whereas 

converges if and only if y > I 13 . Hence, by the Remark we conclude that L: bn con
verges if y > 1 13 .  It is worth noting that, on the basis of the Remark, we can say 
nothing about the behavior of the series when 0 < y S I 13 . Nevertheless ,  the series 
converges for all y > 0 as can be proved by considering more terms from the Tay

lor expansion of tan X and observing that the series Ln ( (- It In  y + 1 In  y+ I ) k con

verges for all y > 0 if k is odd and L: I (- It lnY + l ln y+ I I k converges if and only if 
y > 1 1 k. Notice that \ x \ < \ tan x \  < 2 \x \  for x small enough, hence 

0 <  - + -- < tan -- + -- < - + ---1 ( - l )n I ( (- I )n 1 ) I 2 2 ( - 1  Y 

nY  nY+ I n Y  nY+ I n Y  nY+ I  

and s o  the series i s  absolutely convergent i f  and only i f  y > I . Finally, the Alter
nating Series Test applies if and only if y > 2. Indeed, since tan x is increasing and 
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I tan x I  = tan l x  I for l x  I < n /2, it follows that 

1 (- It (- l ) n+ l 
l bn l � I bn+ ! I -¢?  nY 

+ n Y+ l 
� 

(n + l ) Y + 
(n + 1 ) y+ l 

-¢? 
n + (- 1 )" 

> 
(-n-) y+ l 

(n + 1 )  + ( - 1 )"+ 1 - n + 1 

2 0 9  

The last inequality is verified for all positive y if n is even, whereas i t  is true only for 
y > 2 if n is odd and sufficiently large. 

The following example concerns a series with no regularity in sign. 

EXAMPLE 3 .  Consider the real series L b, , whose generic term, depending on the 
parameters a, y E JR, y > 0, is defined by ( sin an ) 

bn = exp ----;;r- - 1 . 

If a is multiple of n then the series is identically zero. For a f kn , consider the 
Taylor expansion, ex - 1  = x + x2j2 + o (x2) .  The series L: Csin an) jnY con
verges for all a, y E JR, y > 0 by Dirichlet' s  Test [7, Theorem 3, p.  1 37] whereas 
L (sin2 an) jn2Y = L ( 1  - cos 2an)  j2n2Y converges if and only if y > 1 /2 . Hence, 
by the Proposition, we have that 

. 1 L bn converges 1f y > 2 ,  
1 L bn diverges to + oo if 0 < y :S 2 .  

Finally, observe that L b" is absolutely convergent if and only if y > I [3, p. 60] . 

Counterexamples We now provide counterexamples to show why results cannot be 
extended in certain ways.  

The Proposition cannot be extended to odd powers much more than we have done 
in our Remark. Indeed, if L an converges and the function f satisfies 

f (x )  = ax + {Jx2k+ l + o (x2k+ 1 ) , fJ f 0, k E f::J , 

then no implications can be drawn in general between the convergence of L (an ) 2k+ l 
and L f (an ) ;  that is  

" (an )2k+ l 
� converges L f (an ) converges . 

EXAM PLE 4 . ( =# )  Consider the real series L an , where 

(- It an = \(fi 

and the function f (x )  = x + x3 + x4 .  
EXAMPLE 5 .  ( ¢,i) Consider the real series L a" , where 

( - l )k 1 
azk = V2f + 3./2f 1 

and a2k+ 1 = - 3 ./2k 
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and the function f (x )  = x + x3 - x4 .  In this case I: an and I: f (an ) both converge, 
but I: a� and I: a� do not. 

The following example shows that the converse of ( l )  is also not true; that is ,  if 

I: an converges and f (x) = ax +  f3x2k+ 1 + o (x2k+ 1 )  then 

L f an l 2k+ l 
converges {j L f (an )  converges. 

E X A M PLE 6. Consider the function f (x) = sin x = x + x3 16 + o (x3 ) and the se
ries I: ( - l )n  1 In n .  Then I: sin ( ( - 1  t I In n)  converges (Alternating Series Test) but 

I: I (- W I ln n ! 3 = I: l I ln3 n does not. 

We conclude by observing that the Limit Comparison Test, which, for series of 
positive terms, states that L a11 and L bn behave the same if an � bn [5, p .  342, § 1 73 
D] , does not extend to series without restrictions on sign. Take, for instance, bn as in 
Example 1 and an = (- I t l nY . 
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From the Cauchy- R iemann Eq uat ions to th e 
F u ndamenta l Theorem of A lgebra 

A L A N  C .  L A Z E R  
University of Miami 

Coral Gabl es, FL 3 3 1 2 4  
a. lazer@math.miami .edu 

Beginning with the doctoral dissertation of C. F. Gauss, there have been at least eleven 
proofs of the Fundamental Theorem of Algebra: For every nonconstant complex poly
nomial p(z) ,  there is a complex number zo such that p(z0) = 0 [3, 7, 8] . Why then 
would anybody be interested in another proof? 

Our principal reason is that it gives an application of the Cauchy-Riemann equations 
which is usually taught in the first two weeks of an undergraduate complex variable 
course. 

Our proof has three main ingredients. The first reduces to first-semester calculus . 
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LEMMA 1 .  If w (x , y) is a real-valued function on �2 with second-order partial 

derivatives and w (x , y) attains its maximum at (x0 , y0) , then 

a 2w a 2w �w (xo , Yo) = axz (xu , Yo) + ay2 
(xu , Yo) :S 0.  

Proof The two functions of one variable x �----+ w (x ,  y0) ,  � �----+ �. and y �----+ 
w (xo , y ) ,  � �----+ �, attain their maxima at x0 and y0 respectively. From the sec

a 2w 
ond derivative test o f  single-variable calculus i t  follows that 

ax2 
(x0 , y0) _:s 0 and 

a 2w 
ayz (xo , Yo) :S 0, which proves Lemma 1 .  • 

Our second ingredient is a property of complex polynomials .  

LEMMA 2. Let Q (z) be a nonzero complex polynomial. There exists a number 
d > 0 such that Q (a) = 0 implies Q (a + d) =f. 0. 

Proof From the theorem about factoring polynomials, it follows that Q (z) = 0 has 
a finite number of solutions .  The assertion of the lemma follows by taking d to be a 
positive number that is less than the distance between any two distinct roots of Q .  This 
proves Lemma 2. • 

Our third ingredient is an identity, which we will prove after a brief review. 
Let D be an open subset of <C. Recall that a complex-valued function defined on 

D is holomorphic in D if it is differentiable at each point of D. We identify the com
plex numbers CC with �2 in the usual way and recall that if f (z) = u (x , y) + i v (x ,  y ) ,  
where u and v are real, is holomorphic i n  D, the well-known Cauchy-Riemann equa
tions imply that 

f' (z) = Ux (x , y) + i vx (x , y) = vy (x , y) - i uy (x , y ) .  

I t  follows that if /' i s  also holomorphic i n  D, then 

f" (z) = Uxx (X , y) + i Vxx (X , y) = -Uyy (X , y) - i Vyy (X , y) . 

Equating real and imaginary parts in the above equation, we find that �u (x , y) = 0 
and �v (x ,  y) = 0. 

The following facts are usually assumed without proof in a complex variable course, 
since the proofs are the same as in a single-variable calculus course [1 ,  2] . 

(i) The sum and product of two holomorphic functions in D are holomorphic in D 
and the usual formulas hold for derivatives of sums and products. 

(ii) If g is holomorphic in D and g (z) =f. 0 for every z E D, then 1 /  g is  holomorphic 
in D and 

(iii) If 

( 1 ) ' , 2 g = -g jg . 

where a0 , a 1 , • • •  , an are complex constants, then p is holomorphic in C and 

p' (z) = a l + . . .  + (n - I )an- I Zn-Z + nanzn- l . 
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We now prove the identity referred to above. 

LEMMA 3 .  Jf f(z) and f' (z) are both holomorphic in D, then 

� ( l f (z) l 2 ) = 4 1 f' (z) l 2 . 

Proof Let f(z) = u (x , y) + i v (x , y) . Then l f (z) l 2  = (u (x ,  y))2 + (v (x ,  y) ) 2 •  It 
follows that if w (x ,  y) = l .f (z) l 2 ,  then Wx = 2uux + 2vvn Wxx = 2uuxx + 2(ux? + 
2vvxx + 2(vx ) 2 ,  and, similarly, Wyv = 2uuyy + 2(uy ) 2  + 2vvyy + 2(vy ) 2 .  Since 
�u = �v = 0 in D ,  

�w = 2(ux )2 + 2(vx ) 2 + 2(uy)2 + 2(vy )2 , 

= 4 1 f' (z) l 2 , 

where the last equality follows from the Cauchy-Riemann equations .  This proves 
Lemma 3.  • 

Proof of the Fundamental Theorem of Algebra. Let p(z) be a nonconstant complex 
polynomial . Then p' (z) is a nonzero complex polynomial. Therefore, there exists a 
number d, d > 0, such that p' (z) = 0 implies p' (z + d) =I= 0. 

We claim that there exists zo such that p(z0) = 0. Assuming the contrary, the func
tion .f(z) = l l p (z) and .f(z + d) are holomorphic on C. Therefore, 

w (x ,  y) = l .f (z) l 2 + l .f (z + d) l 2 

is continuous and has continuous second-order partial derivatives .  It is easy to see that 
w (x ,  y ) --+ 0 as x2 + y2 --+ oo. 

Let w attain its maximum at  (x0 , y0) .  From Lemma 1 ,  �w (x0 , y0) :S 0. From 
Lemma 3, �w(x ,  y) = 4( 1 .f ' (z) l 2  + l f' (z + d)2 1 . Therefore, letting zo = x0 + iy0 ,  we 
have f' (z0) = 0 and f' (z0 + d) = 0. But .f' (zo) = - p' (z0) I p (zo) 2  and f' (zo + d) = 
- p' (zo + d) I p (z0 + d)2 .  Therefore p' (z0) = 0 = p' (z0 + d) which is a contradiction. 
This proves the Fundamental Theorem of Algebra. • 

We would like to point out that for functions f holomorphic in an open set, the 
identity 

is well known. It is an exercise in Nehari [4, p. 64] and also in the classic reference, 
Titchmarsh [6, p. 7] . However, to derive it from the Cauchy-Riemann equations, one 
must first establish that the real and imaginary parts of .f have second-order partial 
derivatives .  For general holomorphic functions this can ' t  be done without the Cauchy 
theory of integration or other advanced theory. For our application of ( * ) , with .f = 
I I p ,  this was circumvented by use of the elementary properties (i), (ii), and (iii) .  

Finally, we indicate another proof based on Lemma 3 .  A function w that is twice 
continuously differentiable in a connected, bounded, open set D, continuous on i>,  
and satisfies �w :::0: 0 is called subharmonic in  D . The Maximum Principle [5] for 
subharmonic functions shows that max0 w = max;w w, where a D  is the boundary 
of D. Lemma 3 shows that if p (z) is a nonconstant polynomial without zeros, then 
w (x ,  y) defined as 

I w (x , y) =  
j p (z) l ' 

where z = x + iy ,  

satisfies � w :::0: 0 on R2 . Taking D to  be a disc of  radius r centered at  0 and using the 
fact that w --+ 0 as r --+ oo, the Maximum Principle shows that w == 0, contradicting 
w (x ,  y) > 0. 



VOL .  79, NO. 3 ,  J U N E  2006 2 1 3  
REFERENCES 

I .  Joseph Bak and Donald J. Newman, Complex Analysis, 2nd edition, Springer Verlag, New York, 1 997. 
2 .  William R.  Derrick, Introductory Complex Analysis, and Applications, Academic Press, New York and Lon

don, 1 972. 
3 .  Benjamin Fine and Gerard Rosenberger, The Fundamental Theorem of Algebra, Springer Verlag, New York, 

1 997. 
4. Z. Nehari, Conformal Mapping, McGraw-Hill, New York, 1 952 .  
5 .  M.H. Protter and H.F. Weinberger, Maximum Principles i n  Differential Equations, Prentice Hall, Englewood 

Cliffs, N.J . ,  1 967. 
6 .  E.C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford University Press, London, 1 939. 
7 .  Gabor Toth, Glimpses of Algebra and Geometry, Springer-Verlag, New York, 1 997. 
8 .  J.Y. Uspensky, Theory of Equations, Mc-Graw Hill , New York, 1 948. 

Path Representation of a 
Free Throw S hooter's Progress 

C H R I S T O P H E R  L .  B O U C H E R  
Salem State Col l ege 

Salem, MA 0 1 9 7 0  
cboucher@ salemstate.edu 

A problem on the Putnam exam given December 7,  2002 involved a basketball player 
(Shanille O' Keal) taking a sequence of free throws .  The player makes the first shot, 
misses the second, and makes each subsequent shot with probability equal to the frac
tion of successful shots prior to that point. Thus,  Shanille makes her third shot with 
probability 1 12. If she makes her third shot, she makes her fourth shot with probabil
ity 213 and so forth. The exam asked for the probability that she made 50 of her first 
1 00 shots . We are interested in the probability that Shanille ever finds herself having 
missed k more shots than she has made. 

Shanille 's  "state" after n shots can be represented by a pair (x , y) where x is the 
number of successful shots to that point in the sequence and y is the number of unsuc
cessful shots to that point in the sequence (so n = x + y). If Shanille 's current state 
is (x , y ) ,  her history can be represented by a lattice path from ( 1 ,  1 )  to (x , y) involv
ing only rightward and upward steps where a rightward step represents a successful 
shot and an upward step an unsuccessful shot. Each edge in the lattice is naturally 
associated with a conditional probability . The horizontal edge connecting (x , y) and 
(x + 1 ,  y) has probability equal to the probability that the Shanille, having made x 
shots and missed y shots, makes her next shot. According to our rule, this probability 
is x 1 (x + y ) .  Similarly, the vertical edge connecting (x , y) and (x , y + 1 )  has proba
bility y I (x + y) .  The probability of her history following any particular lattice path is 
the product of the probabilities associated with the edges of the path. 

THEOREM 1 .  The two lattice paths connecting (x , y) and (x + 1 ,  y + 1 )  are 
equiprobable. 

Proof. If we write R U for the path from (x , y) to (x + 1 ,  y + I )  consisting of 
a rightward step followed by an upward step and U R for the path from (x , y) to 
(x + 1 ,  y + 1 )  consisting of an upward step followed by a rightward step, then 

P (RU) = 
_x_ 

· 
_ _:Y __ 

x + y x + y + 1 
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y X = -- ·

----x + y  x + y + l 
= P (UR) .  • 

It follows from Theorem 1 that if one path can be obtained from another by trans
posing two steps,  then the two paths are equiprobable. Since any permutation (i .e . ,  a 
reordering of the steps) of a path can be accomplished by a sequence of transpositions, 
all permutations of a path are equiprobable, a fact we record in this corollary. 

COROLLARY 1 .  Let a be a lattice path from ( 1 ,  1 )  to (x , y) consisting of x - 1 
rightward and y - 1 upward steps and let a (a) be a permutation of a. Then a and 
a (a) are equiprobable. 

In particular, Corollary 1 implies that any two lattice paths with the same number 
of rightward and upward steps are equiprobable. Thus, to calculate the probability that 
Shanil le arrives at any point (x , y) we need only calculate the probability of any one 
path consisting of x - 1 rightward and y - 1 upward steps from ( 1 , 1 )  and count how 
many such paths there are. The path consisting of x - 1 consecutive rightward steps 
from ( I ,  1 )  to (x , 1 )  has probability 

1 2 3 x - 1  1 
- · - · - · · · -- = -

2 3 4 X X 
The path consisting of y - 1 consecutive upward steps from (x , 1 )  to (x , y) has prob
ability 

1 2 
x + 1 x + 2 

y - 1  
x + y - 1 

x !  (y - 1 ) !  
= 

(x + y - 1 ) !  

We record these calculations i n  the following theorem. 

THEOREM 2 .  The lattice path from ( 1 ,  1 )  to (x , y) consisting of x - 1 rightward 
steps followed by y - 1 upward steps has probability 

. (x - 1 ) ! (y - 1 ) !  
p (x , y) = 

(x + y - 1 ) !  · 

The number of lattice paths from ( 1 , 1 )  to (x , y) is  (x + y - 2) 
x - 1  

and so the probability that Shanille winds up at state (x , y) is ,  remarkably, (x + y - 2) (x - 1 ) !  (y - 1 ) !  
= 1 

. 
X - 1 (X +  y - 1 ) !  X +  y - 1 

In particular, the n - 1 states in which Shanille could be after taking n shots are all 
equiprobable and the expected number of shots made in n attempts is n /2. (Thus the 
solution to the Putnam question is 1 / ( 1 00 - 1 )  = 1 /99.) 

The use of lattice paths to visualize the history of our basketball player caused me to 
read with interest [1 ] ,  which calculates the probability that a one dimensional random 
walk returns to the origin given that the walker starts at x = k by viewing the walker's 
progress as a lattice path. A similar analysis can be applied to our basketball player. For 
k E N, let Pk be the probability that our shooter ever finds herself having missed k more 
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shots than she has made, that is ,  the probability that she ever finds herself at a state of 
the form (n , n + k) for some n E N. This is the analog of the probability addressed 
in [1 ] . The number of 2n + k - 2-length lattice paths from ( 1 ,  1 )  to (n , n + k) that 
intersect the line y = x + k only at the point (n , n + k) is the same as the number of 
2n + k - 2-length lattice paths from (0, 0) to (n - I ,  n - I + k) that intersect the line 
y = x + k only at the point (n - 1 ,  n - 1 + k) .  The article [1] denotes this number 
Ck (n - 1 ) ,  where 

C1 (n - 1 ) = -
1 (2n - 2) 
n n - I 

is the (n - l ) st Catalan Number, C2 (n - 1 )  = C1 (n) ,  and for k 2:_ 3 ,  the numbers 
Ck (n) satisfy the following recurrence relation (see Theorem 2 in [1 ] ) :  

( 1 )  

The probability we seek is 

00 
Pk = L Cdn - I )p (n ,  n + k) . (2) 

n= l  

The analogous sum i n  [ 1 ]  is  different because for the walker, all steps up are 
equiprobable and all steps right are equiprobable, while for the basketball player it 
is  paths with the same initial and terminal point that are equiprobable. If k = 1 ,  then 
using 

we have 

1 (2n - 2) 
C1 (n - 1 )  = - , 

n n - 1 

oo oo I 
PI = � cl (n - 1 )p (n , n + 1 )  = � (2n ) (2n - I )  

oo ( 1 1 ) oo ( - l)n+ l  
= L 

-
-

--
= L = log 2 .  

n= l  2n 2n - I n= l  n 
(3) 

So the probability that, at  some point, Shanille has missed one more shot that she has 
made is, remarkably, log 2 .  (Conversely, the probability that she has always made at 
least as many as she has missed is 1 - log 2.) For k = 2, we have 

00 00 1 P2 = L C2 (n - 1 )p (n ,  n + 2) = L = 2 - 2 log 2 .  (4) 
n= l  n= l  n (2n + l )  

An evaluation of the sum in (2) for general k ,  however, requires a closed form 
expression for Ck (n) ,  which is given in the following theorem. 

THEOREM 3 .  lfn ,  k E N  then 

k (2n + k) Ck (n) = -- . 
2n + k n 

Proof. For n = 1 ,  2 . . .  and k = 0, I ,  . . . , let 

k (2n + k) Bk (n) = 2n + k n ' 

(5) 
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and let Ck (n) be the numbers that satisfy ( 1 )  with Co (n) = 0 and 

1 (2n) 
C1 (n )  = -- . 

n + 1 n 

(Note that this implies that C2 (n) = C1 (n + 1 ) ) .  For n E N, Bo (n) = Co (n) and 

_ 1 (2n + 1) _ 1 (2n + 1 ) !  _ 1 (2n) _ C ( ) B1 (n)  - --- - --- · - -- - 1 n . 
2n + 1 n 2n + 1 n !  (n + 1 ) !  n + 1 n 

Using similarly straightforward algebra, one can verify that for all n = 1 ,  2 ,  . . .  and 
k = 0, I ,  . . . the numbers Bk (n) satisfy : 

Bk (n) = Bk- I (n + 1 ) - Bk_z (n + 1 ) .  (6) 

This is the same recurrence relation satisfied by the numbers Ck (n) .  It follows that the 
numbers Bk (n ) are identical to the numbers Ck (n) ,  which is what the theorem asserts . 

• 

Having a closed form expression for the path counts doesn' t  appear to be much use 
in computing the probability that the walker ever finds himself k steps to one side of 
where he started, however it does allow us to solve the analogous problem for Shanille, 
i .e . ,  to compute (2) for general k .  

00 
Pk = L Ck (n - 1 )p (n ,  n + k) 

n= l 

= f k (2(n - 1 )  + k) (n - 1 ) !  (n + k - 1 ) !  
n= l 2(n - 1 )  + k n - 1 (2n + k - 1 ) !  

00 k 
- I: m - n= ] (2n + k - 2) (2n + k - 1 )  

00 ( 1 I ) = � k 
2n + k - 2 - 2n + k - I 

= k u - k � 1 + k � 2 - k � 3 + 0 0 ·] 
= k · (- I )k+ 1 

log 2 - L - .  . ( k- 1 ( 1 )j+ l ) 
j= l J 

The last line in this display uses the series 

oo ( - l )n+ l 
log 2 = L -'--

n n= l 
Note that the sums in (3) and (4) are computed in the same manner as we compute Pk 
here. The first ten values of Pk are displayed below in Table 1 .  

The numerical evidence suggests that these probabilities decline from log 2 to I /2. 
This is in fact the case. S ince the event that Shanille ever finds herself having missed 
k more shots than she has made is  a superset of the event that she ever finds herself 
having missed k + I more shots than she has made, the probabilities certainly decline. 
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TAB L E  1: Some va l ues of Pk 

k 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  

.693 I47 

.6 I 3706 

.579442 

.560745 

.549069 

.54 I l l 7 

.535364 

.53 I 0 1 3  

.5276 1 0  

.524877 

2 1 7 

Thus, limk--.oo Pk surely exists . Determining the value of this limit i s  a nice exercise in 
several techniques from first-year calculus .  First, we note that if 

then 

k fk (x) = (2x + k - 2) (2x + k - I ) ' 

, 2k (4x + 2k - 3) 
fk (x) = - (2x + k - 2)2 (2x + k - I )2 

and for any k = I , 2 ,  . . .  , fk is a decreasing function on [ I ,  oo) . Thus,  we can use 
integrals to bound the series (7) above and below : 

Next, we calculate the improper integrals above: 

foo 
fk (x) dx = � log ( I + �) 

So, we have for any k = I ,  2 , . . .  , 

- log 1 + - < � fk (n) < + - log 1 + - . k ( I ) oo k k ( 1 ) 2 k - f;;: - k (k + 1 )  2 k 

Finally, an application of L'Hopital 's  Rule shows that 

k ( 1 ) I 
lim - log 1 + - = - .  k-->oo 2 k 2 

(8) 

This proves our claim that the probability that Shanille ever finds herself having missed 
k more shots than she has made approaches I /2 as k ---+ oo. 

Acknowledgment. The author is grateful t o  the referees whose comments materially improved the paper. 
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Proposa l s  

To be considered for publication, solutions should be received by November 1,  
2006. 
1746. Proposed by Stephen J. Herschkorn, Highland Park, NJ. 

Alice and Bob play a game in which they alternately flip a (biased) coin that has 
probabi l ity p of coming up heads when tossed. Alice goes first. With one possible 
exception, each player flips the coin once per turn. The first player to have cumulatively 
flipped k heads is the winner. To compensate for Alice's  advantage in going first, Bob 
gets a second flip on his first turn if his first flip turns up tails ;  this is the exception. 
(Note that if k = 1 ,  Bob may not get to flip at all . )  

For each of  the cases k = 1 and k = 2, determine the value of  p for which the game 
fair, and calculate the expected value and variance of the number of flips in the game 
when p takes on this value. 

1747. Proposed by Stephen J. Herschkorn, Highland Park, NJ. 

Does there exist a Hausdorf space with a countably infinite topology? 

1748. Proposed by Anonymous 

Let m and n be positive integers such that mn is a triangular number. Prove that 
there exists an integer k such that the sequence { R j } generated by 

R0 = m , 

has the property that R j R H 1 is a triangular number for all integers j 2: 0. 

We invite readers to submit problems believed to be new and appealing to students and teachers of advanced 
undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 
information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 
succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 
Mathematics, Iowa State University, Ames IA 500 1 1 ,  or mailed electronically (ideally as a �TEX file) to 
ehjohnst@iastate.edu. All communications should include the reader's name, full address, and an e-mail address 
and/or FAX number on every page. 

2 1 8  
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1749. Proposed by Mihaly Bencze, Negygalu, Romania. 

Let r and R be, respectively, the inradius and circumradius of a triangle with sides 
of length a, b, and c and let n be a positive integer. Prove that 

1750. Proposed by Christopher J. Hillar, Texas A&M University, College Station, TX. 

Let p > 3 be prime. Define a sequence x1 , x2 , x3 of integers to be a 3-progression 
if they are in arithmetical progression modulo p. If A � o  A2 , . • •  , An � Zjp'll, i s  a col
lection of sets such that each three progression is contained in at least one of the Aks .  
then the collection {A � o  A2 , • • •  , An } i s  called a 3-covering of 7/.,fp'll, . Find the mini
mum over all 3-coverings of the quantity 

Q u i ck i es 

Answers to the Quickies are on page 226. 
Q961. Proposed by Michael W. Botsko, Saint Vincent College, Latrobe, PA. 

Suppose that (X, d) i s  a compact metric space and that f : X --+ X is a function. 
Suppose that ¢ is a lower semicontinuous real-valued function defined on X and that 

d (x , f (x ) )  S ¢ (x) - ¢ (f (x) ) , 

for all x E X. Prove that f has a fixed point. (To say that ¢ is lower semicontinuous at 
x0 means that for each E > 0, there exists a 8 > 0 such that ¢ (x) > ¢ (x0) - E when 
d(x ,  x0) < 8 . )  
Q962. Proposed by Murray Klamkin (deceased), University of Alberta, Edmonton, 
Alberta, Canada. 

Let a ,  b, and c be the lengths of the sides of a triangle. Prove that 

2(b3c + bc3 + c3a + ca3 + a3b + ab3 ) � (a2 + b2 + c2) 2 + abc(a + b + c) . 

Sol uti o n s  

Fibonacci Graphs June 2005 

1721. Proposed by Donald Knuth, Stanford University, Stanford, CA. 
The "Fibonacci graphs" 

1 1 1 

C> O  2 G Q 4 
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are defined by successively replacing the edge with maximum label n by two edges n 
and n + 1 ,  in series if n is even, and in parallel of n is odd. Prove that the Fibonacci 
graph with n edges has exactly Fn+ l spanning trees,  where F1 = F2 = I and Fn+ l = 

Fn + F11 _ 1 . Show also that these spanning trees can be listed in such a way that some 
edge k is replaced by k ± I as we pass from one tree to the next. For example, for 
n = 5 the eight spanning trees can be listed as 1 25 , 1 24, 1 34, 1 35 , 145 ,  245 ,  235, 234. 

Solution by Michel Bataille, Rauen, France. 
Denote by Yn the Fibonacci graph with n edges, and by tn the number of spanning 

trees of Yn . We use induction to prove that tn = Fn+ 1 •  It is readily checked that t 1 = 1 
and t2 = 2. Let n � 3 .  

I f  n i s  odd, then Yn has one more vertex than Yn- l  and this vertex is an endpoint 
of edges n - 1 and n only. First count the spanning trees of Yn that contain the edge 
n .  These are obtained by adding the edge n to a spanning tree of Yn- l that does not 
contain edge n - 1 or, in a spanning tree of Yn- l that contains edge n - I ,  by dividing 
the existing edge n - 1 into two edges n - 1 and n. Thus there are tn- l spanning trees 
of Yn that contain edge n .  The spanning trees of Yn that do not contain edge n are 
obtained by adding edge n - 1 to a spanning tree of Yn-2 • 

If n i s  even, then Yn has the same number of vertices as Yn- l · It follows from the 
construction of Yn that every one of the t11 _ 1 spanning trees of Yn- l is a spanning tree 
of Yn . If a spanning tree of Yn contains the edge n ,  then it cannot contain edge n - I .  
It follows that such spanning trees are obtained by adding edge n to any of the t11_2 
spanning tree of Yn- 1 · 

In both cases we find that tn = tn- 1 + tn-2 • and the result tn = Fn+ l follows.  
We now construct inductively a suitable l ist  Ln of the spanning trees of Yn .  We take 

L 1  = I and L2 = 2 ;  1 .  Now let n � 3 . If n is odd, we take the terms of Ln- l in the 
order given, and append n to the right end of each element of the list. We then continue 
the list with the terms of Ln_2 in opposite order, with n - 1 appended to the right end 
of each element. If n is even, first take the terms of Ln_2 in reverse order and append 
n to the right end of each element of the list, then continue the list with the terms of 
Ln- l in order. This process results in the lists 

L3 = 23 ; 1 3 ; 1 2  
L 4  = 1 4 ; 24 ; 23 ; 1 3 ; 1 2  
L5 = 145 ;  245 ;  235 ; 1 35 ; 1 25 ; 1 24 ;  1 34 ; 234 

It follows from our argument that tn = Fn+ l that the list Ln contains all spanning trees 
for Yn · The list also satisfies the desired criteria because each list L11 _ 1  and Ln_2 are 
assumed to do so, and because in each case the last spanning tree in the first part of the 
list and the first spanning tree of the second part differ only in the last edge. 

Also solved by Con Amore Problem Group (Denmark), Dave Cromley, A.  K. Desai (India), G.R.A.20 Math 
Problems Group (Italy), Enkel Hyselaj (Australia), Houghten College Problem Solving Group, Richard F. 
McCoart, Christopher N. Swanson, Paul K. Stockmeyer, Paul Weisenhom (Germany), Xinyi Zhang, and the 
proposer. 

Permutations with a Subsequence June 2005 

1722. Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, NY. 

Let k and n be positive integers with k =:::: n .  Find the number of permutations of 
{ 1 ,  2 ,  . . .  , n } in which 1 , 2 ,  . . . , k appears as a subsequence but I , 2, . . .  , k ,  k + 1 
does not. 
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Solution by Michael Andreoli, Miami-Dade College, North Campus, Miami, FL. 

Let s (n , k) denote the number of permutations of { 1 ,  2 ,  . . . , n }  in which I ,  2 ,  . . .  , k 
occurs as a subsequence. Let a (n ,  k) denote the number of permutations in which 
1 ,  2, . . .  , k occurs as a subsequence but 1 ,  2, . . .  , k, k + 1 does not. Then 

a (n ,  k) = s (n ,  k) - s (n ,  k + 1 ) .  

To compute s (n ,  k) , note that there are G )  ways to select the positions for 1 ,  2 . . . .  , k 
to appear in their natural order, then (n - k) ! ways to order the elements k + I ,  k + 
2 ,  . . . , n in the remaining positions. Thus 

s (n , k) = G)
cn - k) ! .  

It follows that 

a (n k) = (n - k) ! - (n - k - 1 ) !  = · . 
(n) ( n ) k · n '  

' 
k k + I  (k + I ) !  

Also solved by Anurag Agarwal, Michel Bataille (France), Tom Beatty, J. C. Binz (Switzerland), Marc Brodie, 
Robert Calcaterra, John Christopher, Con Amore Problem Group (Denmark), Toni Davies and Lauren McMullen 
and Michelle Pullman and Anna Wilkins, A.  K. Desai (India), Fejentaldltuka Szeged Problem Group (Hungary), 
Dmitry Fleishman, Marty Getz and Dixon Jones, G.R.A.20 Math Problems Group (Italy), Ralph P. Grimaldi, A rup 
Guha, Peter Hohler (Switzerland), Houghten College Math Club, Jerry G. Ianni, Kathleen E. Lewis, Peter W. 
Lindstrom, Marvin Littman, Autum Magidin, William Moser (Canada), Jose H. Nieto ( Venezuela), Northwestern 
University Math Problem Solving Group, Angel Plaza de la Hoz (Spain), Rob Pratt, Adriana Rivera and Cecilia 
Greene and Farley Mawyer, A rthur J. Rosenthal, Nicholas C. Singer, Paul K. Stockmeyer, Christopher N. Swanson, 
Li Zhou, and the proposer. There was one solution with no name and eight incorrect submissions. 

An Area Formula June 2005 

1723. Proposed by Herb Bailey, Rose Bulman Institute of Technology, Terre Haute, 
IN. 

Let I be the incenter of triangle ABC with BC tangent to the incircle at D.  Let E 
be the intersection of the extension of I D with the circle through B,  I ,  and C .  Prove 
that 

T DE = 
s - a 

where T and s are, respectively, the area and semiperimeter of triangle ABC, and 
a =  BC .  
Many readers submitted a solution along the following lines. 

Let r be the circle through B, I ,  and C .  Note that I E  and BC are chords of r 
meeting at D, with DB = s - b and DC = s - c. Then DE · DI = DB · DC = 
(s - b) (s - c) . Solving for DE we find 

(s - b) (s - c) 
DE =  DI 

s (s - a) (s - b) (s - c) 
r s (s - a) 

T 
T (s - a) s - a 

Solved by Michel Bataille (France), J. C. Binz (Switzerland), Bruce S. Burdick, Robert Calcaterra, Minh 
Can, Adam C(){fman, Miguel Amengual Covas (Spain), Prithwijit De (Ireland), Emeric Deutsch, Habib Y. Far, 
Fejentaldltuka Szeged Problem Group (Hungary), John Ferdinand,,·, Dmitry Fleischman, Ovidiu Furdui, Marty 
Getz and Dixon Jones, Michael Goldenberg and Mark Kaplan, Peter Gressis, John G. Heu ver (Canada), Peter 
Hohler (Switzerland), Houghton College Problem Solving Group, Enkel Hysnelaj (Australia), Victor Y. Kutsenok, 
Elias Lampakis (Greece), Kim Mcinturff, Juniad N. Mansuri, Dao T. Nguyen, Jose H. Nieto ( Venezuela), North· 
western University Math Problem Solving Group, Peter E. Niiesch (Switzerland), Thomas Peter and Yuguang 
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Bai, Richard E. Pfiefer, Raul A .  Simon (Chile), Albert Stadler (Switzerland), Man Kam Tam, R. S. Tiberio, Paul 
Weisenhorn (Germany), Yan-loi Wong (Singapore), Charles Worrall, John Zacharias, Tom Zerger, Li Zhou, and 
the proposer. 

Sharpening the AM-GM Inequality June 2005 

1724. Proposed by Mihaly Bencze, Sacele-Negyfalu, Romania. 

Let x 1 , x2 , . . .  , Xn be positive real numbers . Prove that 

� Lk--

n 

I 
xk - (Tl

k--

n 

I 
xk) l fn < � L (..jxj 

- ../Xk)2 . 
n I :Sj <k:Sn 

( 1 )  

I .  Solution by Li Zhou, Polk Community College, Winter Haven, FL. 
In [ I  ] it is  shown that if f is  convex on an interval I and a 1 , a2 , . . .  , an E I ,  then 

n ( 1 n ) (a + a ) 
(n - 2) {; f(ak ) + nf ;; t; ak � 2 

l :sf;:sn 
f j 

2 
k 

· 

Applying this with f (x ) = ex on (-oo,  oo) with ak = ln xk for all k we obtain 

(n - 2) t. x, + n (!] x, )"" 

2: 2 , ,f.;," .jXjXi, 

which is equivalent to the desired inequality. 

I .  Vasile C'trtoaje, Two generalizations of Popoviciu's inequality, Crux Math. , 31.5 (2005), p 3 1 3-3 1 8 . 

II. Solution by Peter W. Lindstrom, Saint Anselm College, Manchester, NH. 
Because ( 1 )  is  homogeneous in x 1 ,  x2 , . . . , Xn , we may assume that fl�= l xk = 1 .  

Then, with some algebraic manipulation, it can be shown that ( 1 )  is equivalent to 

(n - 2) Sn � 2Qn - n ,  (2) 

where 

and Qn = L Jx}Xk. 
I :Sj <k:Sn 

We prove (2) for n � 2 by induction. It is easily checked that (2) holds with equality 
when n = 2. Now let n � 2. Assume that (2) holds for any n positive real numbers 
whose product is 1 ,  and assume that x 1 ,  x2 , . . .  , Xn , Xn+ 1 are positive real numbers 
with fl��: xk = I .  Because both sides of (2) are symmetric in the xk s we may assume 
that Xn :::; 1 and Xn+ 1 � I are, respectively, the minimum and maximum of the numbers 
x 1 . x2 • . . .  , Xn , Xn+ l · For these numbers, with n replaced by n + 1 ,  (2) becomes 

(n - 1 ) Sn + (n - 1 )xn+ l  � 2Qn + 2Tn� - (n + 1 ) ,  (3) 

where Tn = L�= l ,JXk. We establish this inequality be adding two other inequalities. 
The first inequality arises from (2) using the n positive numbers x 1 ,  x2 , . . .  , XnXn+ l : 

(n - 2)Sn- l + (n - 2)XnXn+l � 2Qn- l  + 2Tn- 1 Fn� - n .  (4) 
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The second inequality w e  shall need to show is 

(n - 1 )Xn + Sn- 1  + Xn+ I  ( (n - 1 ) - (n - 2)xn )  

2': 2Tn- I Fn + 2� (Tn- 1  ( 1 - Fn) + Fn) - 1 . 
(5) 

Note that adding (4) and (5) gives (3) . To prove (5) , let  x = Fn ::::; 1 and y = .JXn+l 2:  
1 . Then (5) can be rearranged to give 

(n - 2) { 1 + ( 1 - x2) (y2 - 1 ) ) + (y - x)2 + 1 2': - (Sn - 1 - fJ Tn_ J ) ,  (6) 

where f3 = 2 (1 + (1 - x ) (y - 1 ) ) .  On completing the square on the right, (6) be
comes 

n- 1  ( {3 ) 2 {32 
(n - 2) { 1 + ( 1 - x2) (y2 - 1 ) ) + (y - x)2 + 1 2': - L ,JXk - - + (n - 1 ) -

b i  2 4 

Thus we can establish (5) by showing that 

or equivalently, 

(n - 2) { 1 + ( 1  - x2) (y2 - 1 )) + (y - x)2 + 1 - (n - 1 )  ( 1  + ( 1  - x ) (y - 1 ) ) 2 
(7) 

= 1 + ( (y - 1 )2 - 1 ) { 1 - ( 1 - x)2) + 2(n - 2)xy ( 1 - x) (y - 1) 2': 0. 

The last inequality holds because ( (y - 1 ) 2 - 1 ) ( 1 - ( 1  - x )2) 2: - 1  and 
xy ( 1  - x ) (y - 1 )  2: 0. This completes the proof. 

Also solved by Michel Bataille (France), Robert Calcaterra, Ovudui Furdui, Eugene A. Herman, Chi-Kwong 
Li, Albert Stadler (Switzerland), Henry Ricardo, Xiaoshen Wang, and the proposer. 

Parallelograms about an Ellipse June 2005 

1725. Proposed by Michel Bataille, Rouen, France. 

Let E be the ellipse with equation 

where a and b are positive integers . Find the number of parallelograms with vertices 
at integer lattice points and sides tangent to E at their midpoints. 

Solution by Eugene A. Herman, Grinnell College, Grinnell, /A. 
We refer to a parallelogram with vertices at integer lattice points and sides tangent 

to E at their midpoints as a .fitting parallelogram, and we denote the number of fitting 
parallelograms by N (a ,  b) . We will show that N (a ,  b) can be computed as follows .  Let 
g = gcd(a , b) ,  and let g = p� 1 • •  • p:k h  be the factorization of g into primes, where 
p1 ,  . • •  , Pk are the distinct prime factors of g that are congruent to 1 modulo 4. Then 

k 
N (a ,  b) = n ( 1  + 2ej ) 

j= l 
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LEM MA 1 .  Suppose we have any circumscribed parallelogram. If the points of tan
gency of two adjacent sides are denoted (x" y 1 ) and (x2 , y2) ,  then the four points of 
tangency are the midpoints of the four sides if and only if 

X ] X2 + YI Y2 
= 0 

a2 b2 

Proof. Note that the other two points of tangency are the points (-x1 , -y 1 ) and 
( -x2 , -y2 ) .  If the four points of tangency are the midpoints of the four sides, then 
the side tangent at (x 1 ,  y 1 )  is parallel to the line joining the midpoints of the two ad
jacent sides. That line has direction vector (x2 , y2) ,  and the side tangent at (x 1 , y 1 ) 
has normal vector (x 1 ja2 , y J !b2) .  These vectors are orthogonal , which means that 
x 1 xz!a2 + Y 1 Yz/b2 = 0. 

Conversely, if x 1 x2 fa2 + y 1 y2fb2 = 0, then the line joining (x2 , y2) and (-x2 , -yz) 
is paral lel to the side tangent at  (x" y 1 ) .  Likewise, the line joining (x 1 ,  y 1 ) and 
( -x 1 ,  -y1 )  is parallel to the side tangent at (x2 , y2) .  Since (0, 0) is the midpoint of the 
lines joining opposite points of tangency, the points of tangency are the midpoints of 
their sides. • 

Note that the parallelogram with (x 1 ,  y 1 ) = (a , 0) and (x2 , y2) = (0, b) is fitting. By 
Lemma 1 ,  there are no other fitting parallelograms for which some point of tangency 
lies on a coordinate axis .  We refer to this parallelogram as special, and we must now 
count the number of fitting parallelograms that are not special . 

LEMMA 2 .  If g = gcd(a , b), the number of nonspecial fitting parallelograms, 
N (a , b) - 1, equals the number of primitive Pythagorean triples (r, s ,  t) such that t 
divides g. 

Proof. Suppose we are given a fitting nonspecial parallelogram. Since the vertices 
of the parallelogram are integers, we can write the midpoints of each side in the form 
(m/2, n /2) , where m and n are nonzero integers . Since (m/2, n /2) is a point on the 
ellipse, we have 

Therefore, there is a primitive Pythagorean triple (r, s ,  t) and a nonzero integer k such 
that 

mb = kr, na = ks , 2ab = kt (I )  
Hence, we can write 2mnab two ways, which yields 2krs = mnt .  Since gcd(r, s ,  t )  = 
1 ,  there exists a nonzero integer u such that 

mn = ur s and 2k = ut  

Since t is odd, u must be  even. Writing u = 2v , we have 

mn = 2vr s and k = vt  

Next, we combine these two equations with the second of  the equations ( 1  ) .  Writing 
mna in two ways, we obtain 2ra = tm.  Hence m is even and there exists an integer a 
such that 

m 
- = ar and a = at 
2 

Similarly, n is even and there exists an integer fJ such that 
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n 
- = �s and b = �t  
2 

Therefore t l g ,  and one point on the ellipse is (ar, �s) . 
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Conversely, suppose there i s  a primitive Pythagorean triple (r, s ,  t )  such that t l g .  
Hence there exist integers a and � such that a = a t  and b = � t .  Note that all the 
points (±ar, ±�s) and (±as , ±�r) lie on the ellipse. In particular, this yields two 
nonspecial fitting parallelograms. In the notation of Lemma 1 , these have the following 
points of tangency on adjacent sides :  

(x J , Yl )  = (ar, �s ) ,  

(x J , Y l ) = (as ,  �r) , 

(x2 , Y2) = (as ,  -�r) 

(x2 , Y2) = (ar, -�s)  

Note that each of  these pairs of  points satisfies Lemma l and that the permuted prim
itive Pythagorean triple (s ,  r, t )  yields the same two pairs of points . Furthermore, the 
following computation shows that the two points of tangency can only arise from the 
same primitive Pythagorean triple and its permuted triple . Suppose (r ' ,  s ' , t ')  is an
other primitive Pythagorean triple and that a' and �� are integers such that a = a't '  
and b = �'t ' .  Let (x 1 ,  y 1 )  = (ar, �s) and (x2 , y2) = (a'r' , �'s ') . Then 

I I R R' I I x 1 x2 Y1 Y2 ara r p Sp s ( , 
'
) 

-- + -- = --- + -- = - rr + ss 
a2 b2 ata't ' �t�'t ' t t ' 

Thus x 1x2ja2 + y1 y2jb2 = 0 if and only if rr' = -ss' . This equation is equivalent to 
the pair of equations r' = ±s and s' = =fr, since gcd(r, s ) = l and gcd(r ' ,  s ') = l ; 
hence, by Lemma 1 ,  our assertion is proved. We have therefore established a one
one correspondence between the nonspecial fitting parallelograms and the primitive 
Pythagorean triples (r, s ,  t) such that t I g .  

To complete the solution, w e  define the following two functions o n  the set o f  posi
tive integers : 

f (n)  = number of primitive Pythagorean triples (r, s ,  t) such that t i n 

R (n)  = number of non-negative primitive solutions of u2 + v2 = n 

Note that f (n) = 0 for n < 5 , since 5 is the smallest possible value of t .  Also, (r, s ,  t )  
is  a primitive Pythagorean triple if and only if there exist positive integers u and v of 
opposite parity such that gcd(u , v) = 1 and t = u2 + v2 • Hence 

f (n)  = L R (t)  
t in . ! >  I , t odd 

It is well known that 

R (n)  = 1 0 
21 

if 4 1n  or p i n  for some prime p such that p = 3 (mod 4) 
otherwise, where j = number of distinct odd primes p such that p I n  

(2) 

(See, for example, E. Landau, Elementary Number Theory, Chelsea, 1 958 ,  p.  1 36 . )  
Therefore, if p�1  • • • PZk h is the factorization of n into primes, where p 1 , • • •  , Pk are 
the distinct prime factors of n that are congruent to 1 modulo 4, then 

f (n)  = R (t)  

In this sum, consider al l  the terms for which the divisor t is  a product of exactly j dis
tinct primes .  According to formula (2), the sum of these terms is 2j times the number 
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of such terms.  I n  fact, the number of such terms i s  the elementary symmetric function 

of degree j in e 1 . . . .  , eb since ei 1 • • • ei j is the number of factors of the form li · · · p:j 
such that 1 :::; k 1  :::; ei , ,  . . .  , L :::; kj :::; eir Therefore 

k k k 

f (n )  = L 2j L ei 1 • • · eij = L L 2ei 1 · · · 2eij = fl(1 + 2ej ) - 1 
j= l i , < · · · < ij j= l i ] < · · · <ij j= l 

Combining this formula with Lemma 2 shows that N(a ,  b) = TI�= I ( 1 + 2ej ) . • 

Note: Thanks to Arnold Adelberg for assistance with the number theory aspects of this 
solution. 

Also solved by the proposer. There were several incorrect submissions. 

A nswers 

Solutions to the Quickies from page 2 1 9. 
A961. It is well known that if (X, d) is a compact metric space and </J is lower semi
continuous on X, then </J takes on its minimum value on X. Thus, there exists an m E X 
such that <P (m) :::; <P (x ) for all x E X.  By the condition given in the problem statement 
we have 

0 :::; d (m , f (m))  :::; </J (m) - <P (f (m))  :::; 0. 

Thus d (m , f (m))  = 0, and it follows that f (m) = m .  

A962. After some rearrangement, w e  see that the inequality i s  equivalent to 

2 L b2c2
- 2abc L a :0:: 2 L:: a4 - 4 L(b3c + bc3 ) + 6 L b2c2 , 

where the sums are symmetric over a , b, and c. This inequality is equivalent to 

or 

It is easy to check that this last inequality is true, with equality if and only if the triangle 
is equilateral or degenerate with one side of length 0. 
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Fun, Fun, Fu ncti ons  
(with  apo l og ies to  the Beach Boys) 

Well, she got the calculator and she headed straight away for the beach now 
Seems she forgot all about the graph paper like she told her ol' Teach now 
She has the buttons all flying, always trying just to keep it in reach now 
And she ' ll graph fun, fun, functions ' til her teacher takes the TI away 

(fun, fun, functions ' til her teacher takes the TI away) 

2 2 7 

Well, the class can ' t  stand her ' cause she DRAWs, MODEs, and GRAPHs like 
an ace now 

(you DRAW like an ace now, you DRAW like an ace) 
She switches Function to Polar to Parametric at a really fast pace now 

(you MODE like an ace now, you MODE like an ace) 
A lot of guys try to catch her but she knows how to ZOOM and to TRACE now 

(you GRAPH like an ace now, you GRAPH like an ace) 
And she ' ll graph fun, fun, functions ' til her teacher takes the TI away 

(fun, fun, functions ' til her teacher takes the TI away) 

Well, you knew all along that the Teach was gettin' wise to you now 
(you shouldn' t  have rr ' ed now, you shouldn' t  have rr 'ed) 

And since she took your batteries you've been thinking that your functions are 
through now 

(you shouldn' t  have rr ' ed now, you shouldn' t  have rr 'ed) 
But you can come along with me ' cause we've got a lot of graphing to do now 

(you shouldn' t  have rr 'ed now, you shouldn' t  have rr ' ed) 
And we' l l  graph fun, fun, functions now that Teacher took the TI away 

(fun, fun, functions now that Teacher took the TI away) 
And we' l l  graph fun, fun, functions now that Teacher took the TI away 

(fun, fun, functions now that Teacher took the TI away) 

Brian D. Beasley 
Presbyterian College 
Clinton, SC 29325 
bbeasley @ mail .presby.edu 
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Devlin, Keith, Math back in forefront, but debate lingers on how to teach it, San Jose Mercury 

News ( 1 9  February 2006) 4P; How do we learn math?, http : I /www . maa . org/devl in/devl in_ 
03_06 . html . 

According to Devlin, math is hard, but humans can do it because of our abilities for language, 
ascribing meaning, and learning new skills .  Learning mathematics is like learning chess, ski
ing, driving, or playing an instrument, or even using a VCR or a computer. His claim is that 
for those as well as for mathematics, mechanical rule-following and "procedural practice" must 

precede conceptual understanding. Consequently, high school mathematics education-and col
lege calculus-should concentrate on fostering the ability "to learn and apply rule-based sym
bolic processes without understanding them" [his emphasis] . Explanations should be provided 
"as a matter of intellectual courtesy." Devlin is correct in operational terms, particularly for 
concrete learners: Whatever we may try to teach, much of what students learn in mathematics 
and other subject areas is merely to run rudimentary algorithms. Training students to such "ini
tial mastery of use" may well equip them for [warning: cliche follows] daily "life in the highly 
technological world they will live in"-but it is indeed training, not education, and certainly 
not intel lectual . Devlin's  argument also disregards the role of motivation in [warning: another 
cliche ahead] a pragmatic world driven by immediate feedback and satisfaction. To use Devlin's 
examples, people learn chess, skiing, driving, or an instrument, or to use a VCR or a computer, 
for the pleasure, utility, or convenience that the skill provides .  How many high school students 
want to learn math for the enjoyment of it, or have a problem that they look forward to using 
math to solve, or find that it affords them great convenience and pleasure in their life? But per
haps the discouraging answers to those questions support Devlin's  argument in a backhanded 
way: We can make no apologia on behalf of mathematics that will thrill most students, so we 
can foster only preconceptual learning of ununderstood technique. Coda: If "understanding can 
come only later, as an emergent consequence of use," then we should endeavor to make the 
"later" sooner, and teach "rule-based symbolic processes" while students are young enough to 
enjoy learning them. 

Ball, Deborah Loewenberg, Imani Masters Goffney, and Hyman Bass, The role of mathe
matics i nstruction in building a socially just and diverse democracy, The Mathematics Edu

cator (Athens ,  Georgia) 1 5 ( 1 )  (2005) 2-6, http : I /math . coe . uga . edu/TME/ I s sue s/v15n1/ 
V15N1 _Bal l . pdf . 

The authors, two elementary school teachers and a distinguished professor of mathematics,  see 
mathematics not as "culturally neutral, politically irrelevant, and mainly a matter of innate abil
ity," but as "a critical lever for social and educational progress." They urge changes in teaching 
practice: listen to students '  ideas and use of terminology, avoid "real world" problems with 
cultural settings that favor middle-class students, and don't  force students to construct knowl
edge (only some will, with class and ethnic differences). They cite the usefulness of tools from 
mathematics in analysis for social change, its "setting for developing cultural knowledge and 
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appreciation," and its emphasis on reasoning and alternative solutions,  which helps i n  learning 
"the value of others ' perspectives and ideas." They conclude by urging a change in the popula
tion of teachers, to one more "diverse in race, culture and ethnicity, and linguistic resources." 

Gold, Lauren, Physicist's algorithm simplifies biological imaging-and also solves Sudoku 
puzzles, Cornell Chronicle Online http : I lwww . news . cornel l . edulstoriesiFeb06IElser . 
sudoku . lg .  html . Elser, Veit, Reconstruction of an object from its symmetry-averaged diffrac
tion pattern, http : I larxiv . org/abslphys icsl0505 174; The Mermin fixed point, Founda

tions of Physics 33 ( 1 1 )  2003 : 1 69 1 - 1 698, http : I larxiv . orglabslnlin . CGI0206025 . 

Promulgate an algorithm for imaging, and the world yawns; tell them that it can solve Sudoku 
puzzles, too, and your campus public relations office may make you and your algorithm famous .  
Veit Elser (Cornell University) has developed an  algorithm for X-ray diffraction microscopy, a 
technique that uses "soft" X-rays that do not damage the specimen. The algorithm constructs the 
image from the diffraction pattern, using Fourier synthesis and two constraints : a clearly defined 
boundary, and matching wave amplitudes in the synthesis to those measured in the experiment 
(a nonconvex constraint) . (For Sudoku, the two constraints are that each digit appears only once 
per row and column, and all nine digits appear in each subblock.) The principle behind Elser's 
difference-map algorithm is the same as with Newton's  method for root-finding: "to construct 
an iterated map whose fixed points are by design the problem's solution." Elser claims that his 
algorithm is superior to the naive alternating projection map (special cases of which are known 
in other contexts as biproportional scaling or the balancing algorithm) . Although the difference 
map can be computed efficiently ("in a time that grows only quasi-linearly with the number of 
pixels"), there is no theory yet about the number of iterations required for convergence. 

Crilly, Tony, A rthur Cayley: Mathematician Laureate of the Victorian Age, John Hopkins Press, 
2006; xxiii + 6 1 0  pp, $69.95.  ISBN 0-80 1 8-80 1 1-4. 

This is a thorough biography, by a mathematician, of Arthur Cayley, England's leading math
ematician of the nineteenth century. He was "driven by the beauty of mathematics to the point 
of obsession" and "constantly diverted from subject to subject as he pursued the mathemati
cal zeitgeist." We learn tantalizingly that his closest colleagues admired him for his character, 
though it is hard to a get a feel for that side of the man from this biography; given the thorough 
research that went into this volume, the shortcoming is no doubt in the information available. 

Wapner, Leonard M., The Pea and the Sun: A Mathematical Paradox, A K Peters, 2005 ; xiv + 
2 1 8  pp, $34. ISBN 1-5688 1-2 1 3-2. 

This book is  devoted to a ''journalistic, (as opposed to mathematically) intensive, look" at the 
Banach-Tarski paradox, which in generalized form states that "a solid of any shape and volume 
can be decomposed and reassembled to form another solid of any specified shape and volume." 
To be accurate, however, volumes are not involved, since the decomposition involves nonmea
surable sets ; naturally, the proof is  nonconstructive. This book is  entertaining and instructive, 
and its paradox may "hook" readers into an appreciation of mathematics. 

Franzen, Torkel,  Godel 's Theorem: An Incomplete Guide to Its Use and Abuse, A K Peters ; x + 
1 72 pp, $24.95 (P). ISBN 1-568 8 1 -23 8-8. 

At last, a book, devoid of all but the most essential mathematical symbolism, to help set non
mathematical colleagues and friends straight about what Godel 's  results do and (mostly) don' t  
say-about human thought, theological "applications," randomness,  infinity, or  Roger Penrose's  
arguments for a "science of  consciousness ." Students of  mathematics, whether they have had a 
course in mathematical logic or not, will find the book illuminating and highly readable. 

Baker, Stephen (with Bremen Leak), Math will rock your world, Business Week (23 January 
2006), http : //www . busines sweek . com/magazine/cont ent/06_04/b396800 1 . htm . 

This cover article in Business Week touts the growing use of mathematics to mine databases 
for business and social purposes, notes the increased demand for "luminary quants," and joins 
the call for training more "math entrepeneurs." It concludes, in the words of James R.  Schatz 
(NSA), that "There has never been a better time to be a mathematician." 



N E W S  A N D L E T T E R S 
A l most S q u are? B u bba Maj ors m B u s i ness 

Editor: 

Bubba is a member of a hypothetical Calculus I class where the instructor has been 
motivated by the recent article [1] which reviewed almost square rectangles that had 
originally appeared in [2] . This hypothetical instructor decides to give a supplementary 
lecture on Farmer Ted's construction of a rectangular chiaken coop of 1 90 square feet 
with the restriction of the pen having integer sides. The solution presented in class (and 
in these papers) is that Ted constructs an 1 1  foot by 1 7  foot pen reducing the area to 
1 87 square feet. (A 1 0  by 1 9  pen is poor use of fencing.)  

Bubba is perplexed. He reasons that if he used the same amount of fence, 2 x ( 1 1 + 
17 )  = 56 feet and divides this by 4, he can have a square pen of 1 4  by 1 4  with an area 
of 1 96 square feet. Bubba decides that the kind of mathematics presented in this class 
is nonsense and decides to major in business. 

If Bubba had had the nerve and patience to present his solution to the instructor, 
the instructor would argue that the pen must be less than or equal to 1 90 square feet. 
Bubba might argue that the instructor changed the original problem from exactly 1 90. 
Why can ' t  the area be increased a little? With the same amount of fence we get 9 more 
square feet of area. 

The above confusion (and the potential loss of a math major) results from us dealing 
with four different problems where all the variables are integers : 

1 .  Find the smallest perimeter with integer dimensions for a rectangle of exactly A 
square feet. 

2. In a prudent and economic manner find the integer dimensions for a rectangle of 
approximately A square feet. 

3. Find the smallest perimeter with integer dimensions for the largest rectangle not 
exceeding A square feet whose area to perimeter ratio is maximized. 

4.  Find the largest integer area rectangle with perimeter not exceeding L feet. 

(The reader is urged to stop reading and find the relatively easy solution to 4) which 
will be presented later.) 

Problem 1 )  is based on factoring A ,  but when A is prime, the one solution has a 
large perimeter. Even when A contains a large prime factor, such as when A is 1 90, the 
best solution could be "unsatisfactory" in a larger context. Problem 2) is this broader 
context. Unfortunately, 2) does not have a precise mathematical interpretation. Martin 
in [2] uses problem 3) to create his concept of almost square rectangles along with 
some nice results in composite number theory. 

Going back to 2), there is no inherent reason why A cannot be made a little larger. 
For example if A is 1 9 then increasing A to 20 produces a 4 x 5 rectangle rather than 
3) ' s  solution of 1 8  giving a 3 x 6 rectangle. Both rectangles have a perimeter of 1 8 . 

Problem 4) is an alternate mathematically precise interpretation of 2). With a little 
prompting students can solve problem 4) themselves.  The solution to 4) gives areas of 
the form c x c or of the form c x (c + 1 ) .  An integer L is one of the following forms :  
4c ,  4c  + 1 ,  4c  + 2, or  4c  + 3 .  The second and fourth of  these are odd and do  not 
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produce an integer sided rectangle. Length 4c gives an area of c x c and 4c + 2 gives 
an area of c x (c + 1 ) .  There is an intuitive interpretation for this solution. Suppose 
one has a square that needs to be a little larger. Increase one of the dimensions by 1 . If 
later we need something a little larger still, increase the other dimension by 1 ,  getting 
the next square. We get the following areas : 

{ 1 ,  2, 4, 6 .9 ,  12 ,  1 6, 20, 25 , 30, 36, 42, 49, . . .  } 

If an instructor is motivated to stretch students ' minds with integer area rectangles, 
approach 4) is probably more satisfying and less confusing to a typical undergraduate 
student than farmer Ted's approach in 3) .  Bubba might major in math ! 

Alice is another member of this hypothetical Calculus I class .  She is perplexed by 
rectangles with dimensions 2 by 1 ,  3 by 1 ,  and 5 by 3 being called almost square. The 
ratio of the length to width of these rectangles is high. She also hears the instructor 
indicate that an integer of the form n2 + 1 for n greater than one is never the area of an 
almost square rectangle. The first few examples : 5, 1 0, 1 7, 26, just about convince her. 
She decides to challenge her boy friend, Joe, with this problem. Joe, who is a computer 
science major, uses his calculator to discover the example :  572 + 1 = 3250 = 65 x 50 
that has a length to ratio of 1 . 3 .  Alice now has a 5 by 3 rectangle with a ratio of 1 .67 
being called almost square and a 65 by 50 rectangle with ratio 1 .3 that is not almost 
square. Alice decides to major in art. 

Joe on the other hand is hooked by the problem. He writes a computer program to 
generate more numbers of the form n2 + 1 that can be factored into 2 integers whose 
ratio is smaller still :  732 + 1 = 65 x 82 and 9 1 2 + 1 = 82 x 10 1 .  He asks himself the 
question: Can the length to width ratio be made as small as one likes? A different math 
professor asks Joe to see if he can discover a pattern in these factors as it relates to n .  
Joe discovers the identity : 

[m (m + 1 )  + 1 ]2 + 1 = [m2 + 1 ] [ (m + 1 ) 2 + 1 ] 

Joe decides to major in math ! 
If we want to inspire new students to pursue mathematics, confusing terminology 

needs to be avoided. Instead we should have a collection of counter intuitive questions 
to "hook" their interest. One such question: Do there exist integers n so that n2 + 1 = 

j k where the ratio of j to k can be made close to 1 ?  (For children this could be asked 
in terms of rearranging tiles .)  

REFERE NCES 

I .  S .  Alspaugh, Farmer Ted Goes 3D, this M AGAZINE, 78 (2005) 1 92-204. 
2. G. Martin, Farmer Ted Goes Natural, this MAGAZINE, 72 ( 1 999) 259-276. 

Respo n se :  

James Kropa 
Marietta, GA 

jkropa@ spsu.edu 
(received 2- 1 5-06) 

I must disagree with James Kropa's critique of [1] and (2] in which he claims that these 
types of articles would drive students away from mathematics. Rather, Martin's article 
was the basis for research completed by two undergraduates ,  which further motivated 
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them t o  attend summer REUs and to pursue graduate degrees i n  mathematics. In that 
sense, these are exactly the types of articles that this magazine should publish. 

One of the strengths of the problem is that there are many generalizations of what it 
means to be almost a square (or a cube) . While some students may dispute the defini
tion of terms in [1 ]  or [2] , these were chosen by the authors as interesting and worthy 
of study. These students are encouraged to create their own definitions and begin their 
own studies of these objects. This is the type of activity which helps potential math 
majors become actual math majors, even encouraging them to make mathematics a 
career. 

Respo n se from the ed i tor :  

Shawn Alspaugh 
Indiana University 

shalspau @ indiana.edu 
(received 3-7-06) 

I am shocked that Bubba, budding business major, is  unaware that the federal gov
ernment imposes a steep tax and an onerous paperwork burden on chicken coops that 
exceed 1 90 square feet. His proposed solution of 1 4  x 1 4  would spell disaster for 
poor Farmer Ted. While the motivation for the conditions restricting the problem were 
not ful ly explained, we mathematicians accept such conditions on faith and let others 
worry about why these conditions are the proper restrictions. 

And I am surprised that artist Alice has forgotten what Humpty Dumpty told her: 
"When I use a word it means just what I choose it to mean-neither more nor less." 
Alice wants to impose an extra condition on "almost square" that was not part of the 
original definition. I am not overly fond of the phrase chosen by the author, but, like 
Humpty Dumpty, he gets to choose the meaning of the words. 

Mathematical problems like these are not posed as practical real world exercises in
tended to attract majors by demonstrating the remarkable utility of our subject. Instead 
they are intended to lay down the rules of an arcane game or puzzle. Is the Four Color 
Theorem a practical application? Is Fermat's Last Theorem useful? Do we urgently 
need to connect three house and three utilities with noncrossing lines? 

The appeal of our subject is  the strange, beautiful, and unanticipated consequences 
of these seemingly innocent restrictions. Real mathematicians, the ones I want to draw 
into the major, respond to the wonder and beauty of such problems. We chuckle about 
the strange conclusions, and pity those who do not love the mystery of it all. Practical
ity? Utility? That must be some other subject. 

Allen Schwenk 
Western Michigan University 

schwenk@ wmich.edu 
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j u l y 1 3  a n d  1 4, 2 005 

Edited b y  Zuming Feng, Cecil Rousseau, and Melanie Wood 

PRO B L E M S  

1 . Six points are chosen on the sides of  an equilateral triangle ABC :  A 1 and A2 on 
BC,  B 1  and B2 on C A ,  and C1 and C2 on AB .  These points are vertices of a convex 
equilateral hexagon A 1 A2B1 B2C1 C2 . Prove that lines A 1 B2 , B1 C2 , and C1 A2 are 
concurrent. 

2. Let a 1 , a2 , • • •  be a sequence of integers with infinitely many positive and in
finitely many negative terms. Suppose that for each positive integer n, the numbers 
a 1 , a2 , • • •  , an leave distinct remainders upon division by n. Prove that every integer 
occurs exactly once in the sequence. 

3 .  Let x , y , and z be positive real numbers such that xyz � 1 . Prove that 

xs 
_ x2 ys 

_ y2 2s 
_ 22 

----- + + � 0 . 
xs + y2 + 22 ys + 22 + x2 2s + x2 + y2 

4. Consider the sequence a 1 , a2 , . • •  defined by 

a, = 2" + 3" + 6" - 1 . 

for all positive integers n .  Determine all positive integers that are relatively prime 
to every term of the sequence. 

5. Let ABC D be a given convex quadrilateral with sides BC and AD equal in length 
and not parallel. Let points E and F lie on sides BC and AD,  respectively, such 
that B E = D F .  Lines AC and BD meet at P, lines BD and E F  meet at Q, and 
lines E F and A C meet at R. Consider all the triangles P Q R as E and F vary. 
Show that the circum circles of these triangles have a common point other than P .  

6 .  In a mathematical competition 6 problems were posed to the contestants . Each pair 
of problems was solved by more than � of the contestants. Nobody solved all 6 
problems. Show that there are at least 2 contestants who each solved exactly 5 
problems each. 

S OLUTIONS 

Note: For interested readers, the editors recommend the USA and International 
Mathematical Olympiads 2005. There many of the problems are presented together 
with a collection of remarkable solutions developed by the examination committees ,  
contestants, and experts, during or after the contests . 

1 . Set x = AB and s = A 1 A2 . We construct an equilateral triangle A0B0C0 with 
A0B0 = x - s. Points C4, A4, and B4 lie on sides A0B0 ,  B0C0 , and C0A0, respec
tively, satisfying C4B0 = C2B ,  A4C0 = A2C,  and B4A0 = B2A .  Then it i s  easy to 
obtain that B0A4 = BAh C0B4 = C B1 , and A0C4 = AC 1 • We obtain three pairs of 
congruent triangles, namely, AB2C1 and A0B4C4 ,  BC2A 1  and B0C4A4, and CA2B1 
and C0A4B4 •  (Indeed, we are sliding the three corner triangles together. ) 

It follows that A4B4 = B4C4 = C4A4 = s ;  that is ,  triangle A4B4C4 is equilat
eral, implying that LB4C4A4 = LC4A4B4 = LA4B4C4 = 60° . Hence LA0B4C4 + 
LA0C4B4 = LBoC4A4 + LAoC4B4 = 1 20° , and so LAoB4C4 = LBoC4A4 . Hence 
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L A B2 C 1  = L B C2 A t .  or L B1 B2 C 1  = L C 1 C2A 1 .  Since the vertex angles of the 
isosceles triangles 81 B2 C 1  and C1 C2A 1  are equal , then two triangles are similar and 
hence congruent to each other, implying that C 1 B 1  = C1 A 1 .  Since C1 B 1  = C 1 A 1  
and A 2 B 1 = A 2 A t .  line C 1 A 2 is a perpendicular bisector of triangle A 1 B 1 C 1 . Like
wise, so are lines A 1 B2 and B 1 C2 . Therefore, lines C 1 A2 , A 1 B2 , and B1 C2 concur 
at the circumcenter of triangle A 1 B 1 C 1 • 

It is not difficult to see that triangle A0B4C4 is congruent to triangle B0C4A4 
(and to triangle C0A4B4) .  

2. The conditions of  the problem can be reformulated by saying that for every positive 
integer n ,  the numbers a 1 , a2 , • • •  , an form a complete set of residues modulo n .  We 
proceed our proof as the following. 

( 1 )  First, we claim that the sequence consists of distinct integers ; that is, if 
1 :=:: i < j ,  then a; f= a j . Otherwise the set {a 1 , a2 , . • •  , a j } would contain 
at most j - 1 distinct residues modulo j ,  violating our new formulation 
of the conditions of the problem. 

(2) Second, we show that numbers in the sequence are fairly close to each 
other. More precisely, we claim that if 1 :=:: i < j :=:: n, then I a; - a j I :=:: 
n - 1 .  For if m = I a; - aj I 2:: n ,  then the set {a 1 , a2 , • • •  , am } would con
tain two numbers congruent modulo m, violating our new formulation of 
the conditions of the problem. 

(3) Third, we show that the set {a 1 ,  a2 , . • .  , an } contains a block of con
secutive numbers . Indeed, for every positive integer n, let in and jn 
be the indices such that a;n and a jn are respectively the smallest and 
the largest number among a 1 , a2 , • • .  , an . By (2), we conclude that 
ajn - a;n = l ajn - a;n I :::0 n - 1 . By ( 1 ) , we conclude that {a t , a2 , . . .  , an }  
consists of all integers between a;n and a jn (inclusive). 

( 4) Finally, we show that every integer appears in the sequence. Let x be an 
arbitrary integer. Because ak < 0 for infinitely many indices k and the 
terms of the sequence are distinct, it follows that there exists i such that 
a; < x . Likewise, there exists j such that x < a j . Let n be an integer with 
n ::::: max{ i ,  j } .  By (3) , we conclude that every number between a; and aj , 
including x in particular, is in {a 1 , a2 , . . •  , an } .  Our proof is thus complete . 

3 . Note that 

--------- > -------------
x5 + y2 + z2 - x3 (x2 + y2 + z2 ) 

is equivalent to 

which is true for all positive x ,  y ,  z. Hence 

xs - x2 x2 - .! 
-::-------:----::- > X 

• 

xs + y2 + z2 - x2 + y2 + z2 

Summing the above inequality with its analogous cyclic inequalities, we see that 
the desired result follows from 

2 2 2 1 1 1 
X + y + Z - - - - - - 2:: 0. 

X y Z 
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Since xyz ::: 1 ,  

2 2 2 1 1 1 2 2 2 YZ + x z  + xy 
x + y + z - - - - - - = x  + y + z - "------=-

x y z xyz 

2 3 5  

> 2 + 2 + 2 (x - y)2 + (y - z)2 + (z - x )2 
0 x x z - yz - xz - xy = > 

- 2 - ' 

so we are done. 

4. The answer is that 1 is the only such number. It suffices to show that every prime 
p divides an for some positive integer n. Note that both p = 2 and p = 3 divide 
a2 = 22 + 32 + 62 - 1 = 48. 

Now we assume that p ::: 5 .  By Fermat's Little Theorem, we have 2p- J = 
3p- J  = 6p- J  = 1 (mod p) .  Then 

3 · 2p- I + 2 · 3p- I + 6p- I =: 3 + 2 + 1 =: 6 (mod p ) ,  

or, 6(2P-2 + 3P-2 + 6P-2 - 1 )  = 0 (mod p) ;  that i s ,  6ap_2 is divisible b y  p .  Be
cause p is relatively prime to 6, ap_2 is divisible by p ,  as desired. 

5 .  Applying the Law of Sines to triangles A R F  and C R E gives 

AR A R  CE sin L A F R  sin L C R E  sin L A F R  

R C  
= 

A F
. 

C R  
= 

sin L A R F
. 

sin L C E R  
= 

sin L C E R ' 

as L A R F  = L C R E .  Likewise, 

D Q  sin L D F Q  sin L A F  R A R  
= = 

Q B  sin L B E Q  sin L C E R  RC ' 

by noting that L D F Q + L A  F R = 1 80° and L B E  Q + L C E R = 1 80° . Let Y be 
the center of the spiral similarity (denoted by S J )  that sends segment B D  to C A .  
(The existence o f  this center is to b e  explained later) . Then S 1 ( Q) = R .  Then we 
have L B P C  = L Q Y R,  because both are the angle of rotation of S 1 . Hence R P Q Y  
i s  cyclic ; that is ,  the circumcircle of triangle P Q R always passes through Y .  

Now we consider the existence of point Y .  For any two nonparallel segments 
AD and BC (not necessarily having equal length), let Z be the intersection of lines 
AD and B C. Then Y is the second intersection of circum circles of triangles AC Z 
and B D Z .  (Because these two circles clearly are not tangent at Z, point Y ex
ists . )  Indeed, from the cyclic quadrilaterals B Y  D Z and A Z C Y, we have L C B Y  = 
L Z B Y  = L A D Y  and L YC B  = L Y  A Z  = L YA D ,  implying that triangle A D Y  is 
similar to C B Y ;  that is ,  Y is the center of spiral similarity that sends triangle AD 0 
to triangle C B 0 .  

6 .  Suppose that there were n contestants. Let Pii , with 1 :S i < j :S 6, be the number 
of contestants who solved problems i and j ,  and let n" with 0 :S r :S 6, be the 
number of contestants who solved exactly r problems. Clearly, n6 = 0 and no + 
n 1  + · · · + ns = n .  

By the given condition, Pii > � . or 5p;j 
> 2n . Hence 5p;j ::: 2 n  + 1 ,  o r  Pii ::: 

2nt . We define the set 

U = { (c ,  { i ,  j }) I contestant c solved problems i and j } .  

If we compute I U I ,  the number of elements i n  U ,  by summing over all pairs {i ,  j } ,  
we have 

'""" 2n + 1 
l U I = � Pij ::: 1 5 · -- = 6n + 3 = 6(no + n 1 + · · · ns ) + 3 . 

. . 6 5 l :::S l < ] �  
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A contestant who solved exactly r problems contributes a " 1 "  to (;) summands in 

this sum (where (;) = 0 for r < 2) . Therefore, 

l U I = � (;) n, = nz + 3n3 + 6n4 + I Ons . 

It follows that n2 + 3n3 + 6n4 + I Ons 2: 6(no + n 1 + · · · + ns) + 3 ,  or 

4ns 2: 3 + 6no + 6n 1 + 5nz + 3n3 2: 3 ,  

implying that ns 2: 1 .  We need to show that ns 2: 2.  We approach indirectly by 
assuming that ns = 1 . We call this person the winner (denote by W), and without 
loss of generality, we may assume that the winner failed to solve problem 6. Then 
no = n 1  = nz = n3 = 0. Hence n4 = n - 1 ,  and so 

2n + 1 
l U I = n2 + 3n3 + 6n4 + I Ons = 6n + 4 > 6n + 3 = 1 5  · -

5
- . 

Let m = znt .  It fol lows that p;j = m for 1 4  out of the 1 5  total pairs (i ,  j )  with 
1 ::=: i < j ::=: 1 5 , and for the remaining pair (s , t ) ,  Psr = m + 1 .  

Let 

d; = L Pij ' i = 1 '  2, . . .  ' 6 .  
j #i 

We have just seen that ds = d1 = 5m + 1 and d; = 5m otherwise. On the other 
hand, consider what happens if we build up the 6-tuple (d1 , d2 , • • • , d6) one con
testant at a time, starting with W. Thus we start with (4, 4, 4,  4,  4,  0) , and every 
subsequent contestant adds a permutation of (3 , 3 ,  3 ,  3 ,  0, 0) . Thus 

(d1 , d2 , . • . , d6) = ( 1 ,  1 ,  1 , 1 ,  1 ,  0) (mod 3 ) ,  

contradicting the earlier conclusion that ds = d1 = 5m + 1 and d; = 5m otherwise. 
Hence there were are least two persons to solve five problems. 
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2 005 O l ym p i ad Res u l ts 

The top twelve students on the 2005 USAMO were (in alphabetical order) : 

Robert Cardwell Manzano High School Albuquerque, NM 
Zhou Fan Parsippany Hills Parsippany, NJ 

High School 
Sherry Gong Phillips Exeter Academy Exeter, NH 
Rishi Gupta Henry M. Gunn Palo Alto, CA 

High School 
Hyun Soo Kim Academy of Advancement Hackensack, NJ 

in Science and Technology 
Brian Lawrence Montgomery Blair Silver Spring, MD 

High School 
Albert Ni Illinois Math and Science Aurora, IL 

Academy 
Natee Pitiwan Brooks School North Andover, MA 
Eric Price Thomas Jefferson Alexandria, VA 

High School 
of Science and Technology 

Peng Shi Sir John A. MacDonald Toronto, ON 
Collegiate Institute 

Yi Sun The Harker School San Jose, CA 
Yufei Zhao Don Mills Don Mills ,  ON 

Collegiate Institute 

Brian Lawrence, was the winner of the Samuel Greitzer-Murray Klamkin award, given 
to the top scorer(s) on the USAMO. Brian Lawrence and Eric Price placed first and 
second, respectively, Peng Shi and Yufei Zhao tied for third, on the USAMO. They 
were awarded college scholarships of $20000, $ 1 5000, $5000, and $5000, respec
tively, by the Akamai Foundation. The Clay Mathematics Institute (CMI) award, for 
a solution of outstanding elegance, and carrying a $5000 cash prize, was presented to 
Sherry Gong for her solution to USAMO Problem 3 .  

The USA team members were chosen according to their combined performance on 
the 34th annual USAMO, and the Team Selection Test that took place at the Mathemat
ical Olympiad Summer Program (MOSP), held at the University of Nebraska-Lincoln, 
June 1 2-July 2, 2005 . Members of the USA team at the 2005 IMO (Merida, Mexico) 
were Robert Cardwell, Sherry Gong, Hyun Soo Kim, Brian Lawrence, Thomas Mil
dorf, and Eric Price. Zuming Feng (Phillips Exeter Academy) and Melanie Wood 
(Princeton University) served as team leader and deputy leader, respectively. The team 
was also accompanied by Steven Dunbar (University of Nebraska-Lincoln), as ob
servers of the deputy leader. 

There were 5 1 3  contestants in the 2005 IMO. The average score is 1 3 .97 (out of 42) 
points . Gold medals were awarded to students scoring between 35 and 42 points, silver 
medals to students scoring between 23 and 34 points , and bronze medals to students 
scoring between 1 2  and 22 points. There were 42 gold medalists, 79 silver medalists, 
and 1 22 bronze medalists . Brian submitted one of the 16 perfect papers . Moldovian 
contestant Iurie Boreico' s  elegant solution on problem 3 (presented in this  article) won 
a special award in the IMO, the first time this award is given in the past 1 0  years . The 
team's individual performances were as follows :  

Cord well 
Kim 
Mildorf 

GOLD Medallist Gong 
SILVER Medallist Lawrence 
GOLD Medallist Price 

SILVER Medallist 
GOLD Medallist 
GOLD Medallist 
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I n  terms o f  total score (out of a maximum of 252), the highest ranking of the 9 3  par
ticipating teams were as follows:  

China 235 
USA 2 1 3  
Russia 2 1 2  

Iran 20 1 
Korea 200 
Romania 1 9 1  

Taiwan 
Japan 
Hungary 

1 90 
1 88 
1 8 1  

Ukraine 
Bulgaria 
Germany 

1 8 1  
1 73 
1 63 

Problems for the 2005 USAMO were chosen by the USAMO Committee [Steve 
Blasberg,  Steven Dunbar, Gregory Galperin, Elgin Johnston, Kiran Kedlaya, Cecil 
Rousseau (chair) , Richard Stong, Zoran Sunik, and David Wells] . Proposals were 
made by members of the committee and other highly experienced individuals [Titu 
Andreescu, Gabriel Dospinescu, Zuming Feng, Razvan Gelca, Gerald Heuer, Alex 
Saltman, and Melanie Wood] . The Team Selection Test (TST) was prepared by Zum
ing Feng and Melanie Wood, with gracious help from Kiran Kedlaya, Richard Stong, 
and Ricky Liu. 

The MOSP was held at the University of Nebraska-Lincoln. Because of a generous 
gift from the Akamai Foundation, the 2005 MOSP expanded from the usual 24-30 stu
dents to 55 .  Titu Andreescu, Reid Barton, Zuming Feng (Academic Director) , Chris 
Jewel l ,  Ian Le, Josh Nichols-Barrer, and Melanie Wood served as instructors. Ricky 
Liu and Po-Ru Loh were junior instructors . Oleg Golberg, Anders Kaseorg, Mark Lip
son, Tiankai Liu, and Tony Zhang were graders. 

For more information about the USAMO or the MOSP, contact Steven Dunbar at 
s dunbar@math . unl . edu. 

To appear i n  The College Mathematics journal September 2 006 
Articles 

The Maximal Deflection on an Ellipse, by Dan Kalman 
A Non-Smooth Band around a Non-Convex Region, by Jorge Aariio, Adam Cox, 

Christopher Jones, Mario Martelli, and Allison Westfahl 
More Combinatorial Proofs via Flagpole Arrangements, by Duane DeTemple 

and H. David Reynolds II 
Fibonacci Identities via the Determinant Sum Property, by Michael Z. Spivey 
An Interview with H. W. Gould, by Scott H. Brown 

Classroom Capsules 

Distortion of average class size: The Lake Wobegon effect, by Allen Schwenk 
Exhaustive sampling and related binomial identities, by Jim Ridenhour and 

David Grimmett 
Controlling the discrepancy in marginal analysis calculations, by Michael W 

Ecker 
Stirling's  formula via Riemann sums, by Robert B. Burckel 

Book Review 

Count Down: Six Kids Vie for Glory at the World's Toughest Math Competition, 
by Steve Olson. Reviewed by Peter Ross 



Scient ific Notebook· 
Mathematical Word Process ing • Computer Algebra 

> To mall• an enhnM•d lmplclt plot 
1 Type an equation In fOU' va.ria�Hs. 
2 With the insertion Pf*tt in the expression, from the Plot 30 Animated submenu choose Implicit 

X)'Z + ty +:J - 0 

Animated Tube Plot 
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Teach ing and Learn ing Mathematics Made Easier 
Scientific Notebook, an easy-to-use mathematical word 

processor with a built- in computer a lgebra system, gives 
students a powerfu l  tool for reports, homework, and exams. 
Students can solve mathematical equations and plot 2D and 
3D graphs quickly and easi ly  w ith the point-and-cl ick 
interface. Teachers and students can share mathematical 
documents containing equations and plots over the I nternet. 
When teachers use Scientific WorkPlace® and students use 
Scientific Notebook, the result  i s  an effective environment for 
teaching and learning mathematics.  

Calcu lus :  Understand ing Its Concepts and Methods 
This book on CD uses Scientific Notebook to apply recent 

advances in software technology to the teaching of calculus.  
I t  teaches students both basic concepts and computational 
deta i ls  through explanations, examples, interactive 
explorat ions, problems, and self-quizzes. Students can 
interactively explore examples and carry out experiments 
which reveal what calculus i s  all about. 

Ani mate, Rotate , 
Zoom,  and Fly 
New in Version 5 . 5  

• Compute and plot using 
the MuPAD"' 3 computer 
algebra engine 

• Animate 2D and 3D plots 
using MuPAD s VCAM 
• Rotate, move, zoom in 
and out, and fly through 3 D  
plots w ith new OpenGL"' 
3 D  graphics 

• Label 2 D  and 3D plots so 
that the label moves when 
you rotate or zoom a plot 

• Create 3 D  implicit  plots 

• Select and right click a 
word for l inks to internet 
search options 

Scientific WorkPlace 
for teachers. 

Scientific Notebook 
for students 
and student labs. 

Visit our website for free trial versions. 
www.mackichan.com/amm 
Toll-free: 877-724-9673 • Fax: 360-394-6039 
Email: info@mackichan.com 
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"Th is is a n  i m portant book with a wonderfu l col lection of 
examples, models, and references."* 

I ntroduction to Computational Science 
M o d e l i n g  a n d  S i m u l a t i o n  fo r the  Sc ie nces 

A N G E LA B. S H I FLET & G EORG E W. S H I FLET 
Introduction to Computational Science i s  the fi rst textbook des igned 
s pecifica l l y  for a n  i ntrod u ctory cou rse i n  the computat iona l  
sc ience a n d  e n g i n ee r i n g  cu rr icu l u m .  The text e m b races two major 
a p p roaches to computat i o n a l  sc ience prob lems :  System dyn a m i cs 
mode ls  with the i r g loba l  v i ews of major system s  that change with 
t ime; a n d  cel l u l a r  autom aton s i m u lat ions  with their  local  v iews of 
how i nd i v i d u a l s  affect i n d iv i d u a l s .  An exte n s ive author-generated 
Web s i te conta i n s  tutori a l s  a n d  fi l e s  in a var i ety of softwa re 
packages to accom pany the text. Typ ica l ly, an i n structor se lects one 
system dyn a m i cs too l  (such as  STELLA; Ve n s i m  PLE ,  wh ich  i s  free 
for person a l  a n d  educat i o n a l  use ;  or Berkeley M adonna)  a n d  one 
com putati o n a l  too l  (such as  Map le ,  M athemat ica ,  M ATLAB,  or  
Exce l )  for c lass  use .  

* Robert M .  Panoff, Shodor Ed ucat ion Fo u ndat ion 
Cloth $69.95 0-69 1 - 1 2565- 1 Due June 

P R I N C ETO N 
U n i ve rs i ty P re s s  

800- 7 7 7-4 7 2 6  
Read exce rpts  o n l i n e 
m at h .  p u  p re s s .  p r i  n e e  t o n  . e d  u 

M A A T E X T B O O K S  

Game 
Theory 

The Mathematical Associat ion of Amer ica 
has a great selection for you to choose from ! 

Choose from some of these g reat texts : 

C ryptanalysis/ 
Combinatorics 

• 

Topology Log ic Analysis 

To request an exami nation copy of one of our books, p lease send you r  request on depart
mental letterhead to : The Matflematical Association of Ame rica, Examination copy, P. O. 
Box 91 1 1 2 , Washi ngto n ,  DC 20090- 1 1 1 2 . I nc lude the name of you r  course, the est imat
ed class size and the adoption decision date. We wi l l  send the book along wtth an i nvoice 
payable in  30 days. You may keep the book free for desk use by retu rning the i nvoice 
along with certificat ion that you have ordered the book for you r  course. Otherwise , you 
may either pay for the book, or  return it for fu l l  credit. 

ORDER TODAY !  
1 . 800 .33 1 . 1 622 • WWW. MAA. ORG �j 



Translated from the original German by Peter 
Hilton and Jean Pedersen 

The 99 poi nts of i ntersect ion presented 
here were col lected d u ri n g  a year- long 
search for surpr is ing concu rrence of 
l i nes.  For each example we f ind com
pel l i n g  evidence for the somet i mes 
startl i n g  fact that i n  a geometric f igu re ,  
th ree stra ight l i nes, o r  someti mes c i r
c les,  pass t h rough one and the same 
point.  Of cou rse, we are fam i l iar  with 
some examples of this from basic 

e lementa ry geometry - the i nte rsect ion of 
medians,  alt itudes, angle b isectors, and perpend icu lar  

b isecto rs of s ides of  a tr iangle .  Here there are many more examples 
some for f igures other  than tr iangles,  some where even more than 
t h ree stra ight  l i nes pass t h rough a common point .  

The main  part of  the book presents 99 poi nts of  i ntersect ion p u rely 
v isual ly. They are developed i n  a seq uence of  f i g u res, many without 
capt ion or  verbal com m entary. In add it ion the book conta ins general  
thoug hts on and examples of the poi nts of i ntersect ion , as wel l  as 
some typ ical methods of p rov ing their  existence. Many of the exam
ples shown i n  the book were i nspi red by q uest ions and suggest ions 
made by students and h i g h-school teachers .  Several of those exam
ples have not on ly  a geometrica l ,  but a lso an i ntr ig u i ng aesthetic,  
aspect . 

The book add resses h i g h -school students and students at the u nder
graduate leve l as wel l  as the i r  teachers,  but w i l l  appeal to anyone i nter
ested i n  geometry. 

Spectrum • Catalog Code: POl • 1 68 pp. , Hardbou n d ,  2006 I S B N  0-88385-553-4 
List: $48.50 • MAA Member:  $38 .50 

Order your copy today! 
1 .800.33 1 . 1 622 
www.maa.org 
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